Behavior of Nitrogen Dioxide Removal by the Reaction between Nitrogen Dioxide, Ammonia and Water Vapor in Gas Phase

Young Sun Mok†, Kyung Ryong Jang*, Tae Sung Park*, Kyeong Sook Kim* and In-Sik Nam**

Department of Chemical Engineering and Clean Technology, Cheju National University, 1 Ara 1-dong, Jejn, 690-756, Korea
*Environment and Chemistry Research Group, Korea Electric Power Research Institute, 103-16 Munji-dong, Yusong-gu, Daejeon 305-380, Korea
**Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784, Korea
(Received 16 January 2002; accepted 23 September 2002)

Abstract – This study reports a simple reactor modeling utilizing chemical kinetic data of the gas phase reaction between nitrogen dioxide, ammonia and water vapor in order to estimate the influences of several operating variables on the removal of NO₂ which is generated from NO by the oxidation process in a non-thermal plasma reactor or an electron-beam irradiation reactor. The operating variables chosen are water vapor content, initial concentration of NO₂, reaction temperature and ammonia concentration and the appropriate ranges of such variables were suggested. The gas phase reaction for the removal of NO₂ takes place effectively at the water vapor content higher than 4-6%(v/v), but further increase in the water vapor content does not significantly enhance the removal. The residence time required to achieve a desired removal efficiency of NO₂ was found to rapidly increase when the initial concentration of NO₂ is less than 100 ppm. Since the removal rate of NO₂ is in inverse proportion to the reaction temperature, lower temperature is favorable to promote the reactions. The effect of ammonia concentration on the removal of NO₂ was estimated to be negligible.

Key words: NO₂, NH₃, H₂O, Kinetics, Non-Thermal Plasma, Electron-Beam Irradiation

†To whom correspondence should be addressed.
E-mail: smokie@cheju.ac.kr
서론

석탄 화력 발전소, 열전소와 같은 다양한 연소공정에서 배출되는 질소산화물은 화산주변과 더불어 산성비 기후 요인으로 알려져 있다. 연소공정에서 배출되는 질소산화물은 일산화질소(NO)와 질산화물의 대부분은 이산화물(SO₃)이다. 최근 들어, 이산화물과 질산화물동력에 기여하기 위한 기술로 전자빔 공정(electron beam irradiation process)과 코로나 방전을 기조한 저전 플라즈마 공정(non-thermal plasma process)에 대한 연구가 국내외에서 활발히 수행되고 있다[1-10]. 이들 공정의 대부분은 암모니아 를 반응성계로 사용하고 있으며, 피기로스의 이산화물과 질산화물은 각각 질소비료적인 화산암모늄과 질산암모늄으로 전환된다. 이산화물 혹은 암모니아와의 반응이 매우 높고 정확성이 크고 보통 반응이 되는 정도는 정확히 알려져 있지 않으며, 보통 90% 이상의 계거효과 를 얻어지지만, NOₓ 가 검출되는 경우 가 있으며, NOₓ 가 검출되는 경우는 암모니아가 반응하지 않아, NO를 제거하기 위해서는 전자빔을 조사하거나 코로나 방전을 일으키는 것이 필요하다[5, 6-9].

전자빔 공정이나 저전 플라즈마 공정에서 생성되는 주요 화합물은 O₃, OH, HO₂, NO₂ 같은 태생기, 오프 그리고 이온 생성물이 있으며, 이 중에서 산화물 라디칼로 O, OH, HO₂와 오존은 NO의 제거반응에 중요한 역할을 한다[10-12], 이를 공정에 NO가 처리되는 반응구간을 살펴보면 다음과 같다. O₃는 O, OH, HO₂ 및 오존에 의하여 반론이 형성되고 가온으로 생성되며[11-13], NO는 피기로스의 주입으로 암모니아와 수분에 의 해질산암모늄으로 전환된다. 또한 저전질산암모늄 생성과정은 NOₓ 가 OH 라디칼에 의해 가온(HNO₃)으로 산화하여 다시 암모니아에 반응 하는 기료인간, NO₂를 절연으로 산화수소로 회생하기 위해서는 전화가 소포되고 반응도 높아져야 하지 않기 때문에[11]. 따라서 생성되는 암모니아는 검출된 NOₓ와 수분, 암모니아의 반응에 의한 물로 할 수 있으며, 전화기로의 주 역할은 NOₓ를 NO로 전환시키는 것이다 할 수 있다[5].

저전 플라즈마 공정이나 전자빔 공정에서 산화 반응을 통해 NO가 NOₓ로 쉽게 산화되더라도 NOₓ(Nox+NO₂)의 저항을 위해서는 NO의 개기계가 필요하다. 문제에 보고 들 때는, NOₓ, NH₃, 수분이 반응이 느려지기 때문에 반응이 충돌시기때니 반응기 과정의 같은 암모니아 물질을 더 가저가주기 어려우며 또한, NH₃를 반응기의 중간으로 절연시에도 환기한다[5-14]. 이하의 반응식 중 암모니아를 공정에 추가했을 때의 반응식은 NH₃, NH₃, 수분 사이의 반반에 이용될 수 있는 고유 표면 이 제공되는 불균일 화학반응(betterousogeneous chemical reaction)이 수용된다. 그 외에서 이와 같은 불균일 화학반응이 적용되므로 불균일 예latin화시 공정이나 전자빔 공정의 NOx (NOₓ=NO₂+NO) 저항효율을 50-70% 를 넘지 못한다[5, 8-17]. 또한 이와 같은 반응식은 공정에 추가하는 암모니아의 반반에 이용될 수 있다[4, 14]. 이와 같이 산화물과 반반에 반반되는 환경성이 높을 때는, 암모니아의 피기로스는 반반의 수분을 포함하고 있으므로 이와 같은 역직액이 나타남 수 있고, 피기로스의 분압으로 암모니아 풍을 회전할 경우는 중요한 대가이제가 분산된 분산능력을 증가시키는 결과가 되므로 저전 공정의 부합을 증가시켜 더욱 가능하다.

이상에서 살펴본 바와 같이, 저전 플라즈마 공정이나 전자빔 공정에 서 NOₓ의 저항효율을 높이기 위해서는 NO의 개기계효율을 높이는 것 이 중요하며, 이를 위해서는 NO 계거 반응에 대한 명확한 고유 표면이 필요하다. NO계 거반응속도에 영향을 줄 수 있는 변수로는 피기로스 온도, 습도, NOₓ 농도, NH₃ 농도 등을 들 수 있다. 현재까지도 연구의 방향이 주로 반응기 및 전기공급장치 설계 그리고 NO 산화반응에 중점을 두었기 때문에, 이들 변수가 NO계 거반응속도에 미치는 영향을 주는지에 대한 명확한 연구가 비추어질 필요가 있다. 본 연구에서는 이와 같은 최근방향을 통하여 온도, 습도, NOₓ 농도, 암모니아 농도 등과 같은 변수가 NO계 거반응속도에 미치는 영향을 구를 수 있는 살펴보고자 하며, 효율적인 NO계 거반응조건을 위한 공정변수의 기준을 제공하는 것이 목표이다.

2. 이론적 배경

NO₂, H₂O, NH₃의 화학반응에 대한 속도론적 고찰을 위하여 이들 물질간의 기가 반응속도 소반응(elementary reaction)으로 구분하면 다음과 같다[18, 19].

\[2NO₂ = N₂O₄ \]
\[N₂O₄ + NH₃ = HNO₃ + NH₃NO \]

식 (2)의 의해 생성된 HNO₃는 암모니아와 반응하여 질산암모늄 (NH₄NO₃)으로 전환될 수 있으며, NH₄NO₃는 다음 반응에 의해 질산과 수분으로 분해되는 것으로 알려져 있다[19, 20].

\[HNO₃ + N₂H₄ = H₂O + NH₄NO₃ \]

식 (4)의 의해 생성된 NH₄NO₃는 아래와 같이 NOₓ와 NO로 분해 될 수 있다.

\[2HNO₃ = NO₂ + NO + H₂O \]

그러나 피기로스와 암모니아가 존재하게 되면 식 (5) 형태의 반응은 계산되고, 대신 HNO₃는 암모니아와 다시 반응이 된다.

\[HNO₃ + NH₃ = NH₄NO₃ \]

반반식 (6)의 의해 생성된 NH₄NO₃는 불연성 물질로 질산과 수분으로 분해된다.

\[NO₂ + H₂O = HNO₃ + NO \]

의 반응과정을 요약하면 Fig. 1과 같다. 저전 플라즈마 공정이나 전자빔 공정의 중요한 장점이 하나는 유연한 질산암모늄으로서 유연한 비교도성의 질산암모늄을 얻을 수 있다는 것이다[2]. 그러나 식 (1)에서 식 (7)의 반응속도에 의하면, 제거되는 NO₂의 일부가 질산암모늄으로 전환되지 않는다는 것을 알 수 있다. 식 (2)와 식 (4)의 의해 생성된 질산은 암모니아와 반응하여 질산암모늄으로 전환되지만, 식 (2)의 의해 생성된 NH₄NO₃의 식 (6)에 의해 생성된 NH₄NO₃는 각각 식 (3)과 (7)에 의해 질산과 수분으로 분해 된다. 잘 알려진 바와 같이, 식 (2)와 식 (4)의 의해 생성된 질산은 암모니아와 반응하여 질산암모늄으로 전환되지만, 암모니아를 분리하는 것은 불연하고, 질산은 암모니아와 암모니아와 흐름수온을 이루고 있다[20].

\[\text{Fig. 1. Reaction mechanism of NO₂ removal in gas phase.} \]

HWAHAK KONGHAK Vol. 41, No. 1, February, 2003
Table 1. Kinetic data for the reaction of NO₂ with NH₃ or H₂O

<table>
<thead>
<tr>
<th>Frequency factor (k_i) (m⁶g⁻¹mol⁻²s⁻¹)</th>
<th>Activation energy (E_a) (kJ mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_i) with NH₃: 1.534</td>
<td>-45a2</td>
</tr>
<tr>
<td>(k_i) with H₂O: 9.656x10⁻²</td>
<td>-24.2a0</td>
</tr>
</tbody>
</table>

However, the reaction rate constants were determined for the conversion of solid NO₂ by solid NH₃ or H₂O (19). Table 1 lists the activation energy and frequency factor for the reaction of NO₂ with NH₃ or H₂O. The reaction rate constants \(k_i\) and \(k_f\) for the reaction of NO₂ with NH₃ or H₂O are determined using Table 1. The activation energy \(E_a\) and frequency factor \(k_f\) are determined using Table 1.
식 (26)을 정리하여 다시 쓰면 다음과 같다.

\[
T = \frac{1}{C_{1}} \frac{1}{C_{2}} \left[\frac{1}{C_{1}} C_{1} + \frac{1}{C_{2}} C_{2} + \frac{1}{C_{2}} y_{NO} \right] = \chi_{1}
\]

식 (28)은 쉽게 계산될 수 있으며, 이 식을 이용하여 다양한 조건에 대해 무차원 NOx 농도와 최적시간의 관계를 평가할 수 있다. 식 (20)의 무
차원수들은 초기 NOx 농도, 최적시간 및 온도의 함수로 반응속도상수
를 포함하고 있고, 식 (27)은 초기 NO2 농도에 대한 약모니아의 주입비
(C2) 및 수분함량(yH2O)을 포함하고 있으므로, 결국 식 (28)에 의해 여러 가지 변수 초기 NOx 농도, 수분량, 반응온도, 초기 NH3 농도와 영향
이 계산된다. 식 (28)의 적절적인 계산 결과는 yH2O와 \(\chi_{1}\)의 관계이지만,
식 (20)에서 알 수 있듯이 \(\chi_{1}\)은 최적시간으로 정의될 수 있으므로 yH2O
와 최적시간의 관계가 얻어진다.

3. 결과 및 고찰

3-1. 최적시간과 NOx 제거효율

Fig. 2는 NOx 제거효율이 최적시간의 상관관계를 도시한 것이다.
식 (28)에 의해 최적시간에 따른 무차원 NOx 농도(yH2O)가 계산되므로,
제거효율은 (1-yH2O)×100%의 값은 식을 이용해 쉽게 얻어진다. 저
온 플라즈마 공정이나 절차별 공정에서 NOx 농도로 전환되는 반응은
주로 무인화된 전력에 의존하지만, NOx가 수분 및 약모니아와의 반응
을 통해 제거되므로 약모니아화를 형성하기 위해서는 일정한 반응시간(최적
시간)이 필요하다. Fig. 2가 의미하는 것은 저온 플라즈마 공정이나 절
차별 공정에서 NOx를 NO2로 전환시켜 높였을 때, 최적시간에 따라 NOx
제거효율이 얼마나 영향을 받는다는 것이다. Fig. 2의 계산은 전해질 공정이나 저온 플라즈마 공정의 정형적인 운전조건인 343 K에서 수행
되었는데, 그래서 보는 바와 같이 달성하려는 방향 NOx 제거효율이
높음수록 필요한 최적시간이 길게 연장하고 있다. NOx 제거효율에
따라 필요한 최적시간이 지수적으로 증가하는 이유는 반응속도의 감소
로 해석할 수 있다. 식 (12)에서 알 수 있듯이 반응속도는 NOx의 농도
에 비례하는데, 제거효율이 증가할수록 NOx 농도가 감소되어 반응속도
가 떨어지게 된다. 즉, 원하는 NOx 제거효율이 증가할수록 필요한 최
적시간이 확보되어야 한다. 이를 얻어, NOx의 30%를 기상반응을 통해 제
거하기 위해서는 약 7.2초의 최적시간이 필요하지만, 2개인 60%의 제거
효율을 얻기 위해서는 약 3.5초의 최적시간이 25초가량이 필요하다.

3-2. 초기 이산화질소 농도의 영향

Fig. 3(a)는 식 (28)에 의해 계산된 무차원 NOx 농도와 최적시간의 관
계를 다각 NOx 농도의 방향으로 표현한 것이다. Fig. 3(b)는 원하는 NOx
제거효율을 달성하기 위하여 요구되는 최적시간이 초기 NOx 농도에 따라
어떻게 변화하겠는지를 나타낸 것이다. 이 계산에서는 초기 NOx 농도
와 초기 NH3 농도를 갖는, 즉, 식 (23)의 C2를 1.0으로 두고 계산을 수
행하였다. 앞서 언급한 바와 같이, NOx 제거반응속도는 NOx의 초기농
도가 높을수록 빠르므로, NOx 초기농도가 높음수록 동일한 최적시간에서
제거효율이 높아진다. Fig. 3(a)의 결과에 의하면 최적시간이 작은 때는

HWAHAK KONGHAK Vol. 41, No. 1, February, 2003
3-3. 수분함량의 영향

Fig. 4(a)는 수분의 함량이 2.0-12.0%(v/v) 변화시키며 식 (28)을 이용하여 계산된 NO2 저거효율을 나타냅니다. Fig. 4(a)에서 관찰되는 것처럼 NO2 저거효율은 수분함량에 따라 비례적으로 증가하는 경향을 나타냅니다. 이러한 결과는 수분함량을 변화시킬 때의 수분의 농도 증가에 NO2 저거효율의 증가가 제기된다고 할 수 있습니다.

![Fig. 4(a)](image)

3-4. 반응온도의 영향

Fig. 5(b)는 다양한 반응온도에서 식 (28)에 의해 계산된 NO2 저거효율을 나타냅니다. 반응온도의 증가에 따라 NO2 저거효율은 증가하여 NO2 저거효율을 극대화하기 위해서는 500 ppm의 NO2를 100ppm 이상의 NO2 저거효율을 보이게 됩니다.

![Fig. 4(b)](image)
정상적으로, 반응과정이 다르므로 본 연구에서 다루고 있는 반응과정은 관계가 없음을 밝혀준다.

온도의 증가에 따른 반응속도 감소는 원하는 NO\textsubscript{2} 지기효율을 달성하
는데 필요한 체류시간을 증가시킨다. Fig. 5(b)의 의하여 NO\textsubscript{2}를 50% 지
거하기 위해서는 상온(300 K)에서 약 3.8초의 비교적 짧은 체류시간이
변 충분하다. 온도가 23 K만 증가되었을 때 이상의 체류시간인 8.8초
가량이 필요하다. 즉, 반응을 위한 공간이 2배 이상 커져야 하거나 배기
가스 투입을 절반 이하로 줄어야 한다. 또한, Fig. 5(b)에서 원하는 NO\textsubscript{2}
지기효율을 높을수록 각각 구간의 가속기가 점점 더 커지는데, 이 결과는
화학적 제거효율이 높을 때 온도의 증가능인 미리 분자화된 반응조건에 따라
는 것을 의미한다. 따라서 고온의 NO\textsubscript{2} 제거를 위해서는 반드시 배기가
스 온도를 감소시켜야 할 필요성이 있다. 한편, 대부분의 배기가스는 질
소산화물과 이산화물이 공분하고 있어 적절한 반응온도와의 결정적인 이산
화물의 제거효율도 동시에 고려해야 한다. 문제에 의하면 이산화물 제거
반응은 333-343 K 근처가 적절한 것으로 보고 되는데 [2, 4, 14, 23]. 이산
화물과 질소산화물은 동시에 처리하기 위해서는 최소한의 반응 온도를 이
온도범위 이하로 유지시키는 것이 바람직하다고 할 수 있다.

3-5. 암모니아 농도의 영향

Fig. 6은 초기 암모니아 농도가 NO\textsubscript{2} 저감도에 미치는 영향을 시 (28)
을 이용하여 계산한 결과이다. 식 (28)의 결과에 따르면, 암모니아의
농도는 NO\textsubscript{2} 저감도에 거의 영향을 주지 못하고 있는데, 이 이유는
NO\textsubscript{2}와 수분의 반응속도상수가 NO\textsubscript{2}와 암모니아의 반응속도가 비례
되며 크기 때문이다. 그러나 암모니아 농도가 NO\textsubscript{2} 저감속도에 영향을
주기는 되지 않지만, 온도와 반응경로가 같은 폴라마순으로 정의된 경로에
만족한 별개의 반응모델로 나타난 것이다. 암모니아의 사용은 원활한 대체
조건이 [24]. (1)-(7)에서 알 수 있듯이, 제거
되는 NO\textsubscript{2} 1.1% 보다 암모니아 1.0%는 중요하며, 반응 암모니아의 배
출을 방지하기 위한 바람직한 암모니아 사용량은 NO\textsubscript{2} 저감수도가 감소
하는 333-343 K의 온도대에 암모니아 23 K의 온도대에 암모니아 사용
량을 결정해야 한다.

4. 결 론

본 연구에서는 NO\textsubscript{2} 수증 그리고 암모니아의 반응에 대한 속도론적
임을 통해, 적절한 초기 NO\textsubscript{2} 농도, 수분분율, 암모니아 농도,
반응속도에 대한 기준을 제시하였다. 배기가스의 수분분율이 4-6%(v/v)
이상은 되어야 NO\textsubscript{2} 제거를 위한 반응이 효율적으로 이루어 나고, 수분분
율을 더 증가시키는 것은 필요한 행식시간 및 NO\textsubscript{2} 저감도 증가에서 큰
이익이 없다. 초기 NO\textsubscript{2} 농도가 100 ppm 이하로 줄을 때, 원하는 제거
효율을 달성에 필요한 체류시간이 급격히 증가하고 낮은 농도의 NO\textsubscript{2}
고로제로 제거하는 것이 비효율적이며 알 수 있다. 반응온도는 낮은수
뜻 NO\textsubscript{2} 제거에 유리한 것으로 나타났으며, 이산화물은 동시에 제거하
기 위해서는 최소한의 333-343 K 이하로 배기가스 온도를 낮추어야 한다.
비교 실험에 선출된 암모니아의 사용이 결과에 따라 암모니아
의 농도는 NO\textsubscript{2} 저감 속도에 크게 영향을 주지 못하는 것으로 나타났다.
본 연구는 불규칙 화학반응을 고려하지 않았고, NO\textsubscript{2}와 수분 그리고 NO\textsubscript{2}와 염소가의 반응을 중심으로 반응기구를 단순화시켜졌기 때문에 실제로는 플라즈마 공정이나 전자공정에서 일어나는 NO\textsubscript{2} 저감작용을 정확히 묘사하지는 못하지만, 여기서도 출처가 여러 가지 변수에 대한 상대적인 영향을 향후 유사 공정의 최적 솔루션 결정을 위한 연구에 중요하게 이용될 수 있을 것으로 판단한다.

수용기호

\begin{align*}
A_1 & : \text{frequency factor defined in Eq. (13) [m}^6\text{kmol}^{-2}\text{s}^{-1]} \\
A_2 & : \text{frequency factor defined in Eq. (14) [m}^6\text{kmol}^{-2}\text{s}^{-1]} \\
C_R & : \text{concentration ratio of NH}_3\text{ to NO}_2\text{ at initial condition} \\
E_1 & : \text{activation energy defined in Eq. (13) [kJ}^{-1}\text{mol}^{-1]} \\
E_2 & : \text{activation energy defined in Eq. (14) [kJ}^{-1}\text{mol}^{-1]} \\
k_1 & : \text{reaction rate constant of NO}_2\text{ with ammonia(}k_1=K(a)\text{)} \\
[k_2 & : \text{reaction rate constant of NO}_2\text{ with water vapor(}k_2=k_{2o}\text{)} \\
k_3 & : \text{reaction rate constant of NO}_2\text{ with ammonia [m}^3\text{kmol}^{-1}\text{s}^{-1]} \\
k_4 & : \text{reaction rate constant of NO}_2\text{ with water vapor [m}^3\text{kmol}^{-1}\text{s}^{-1]} \\
K_{eq} & : \text{equilibrium constant between NO}_2\text{ and N}_2\text{O}_4\text{ [m}^3\text{kmol}^{-1}] \\
R_{NO2} & : \text{removal rate of nitrogen dioxide [kmol m}^{-2}\text{s}^{-1}] \\
u_0 & : \text{linear velocity of the gas stream [m s}^{-1}] \\
y & : \text{dimensionless concentration of any component} \\
z & : \text{axial distance [m]} \\
[] & : \text{concentration [kmol m}^{-3}] \\
\end{align*}

그리고자 문자

\begin{align*}
\chi & : \text{dimensionless reaction rate constant defined in Eq. (20) [\text{1}]} \\
\psi & : \text{dimensionless reaction rate constant defined in Eq. (20) [\text{1}]} \\
\tau & : \text{residence time up to any position, } z/\left(\frac{u_0}{a}\right)\text{ [s]} \\
\tau_L & : \text{total residence time [s]} \\
\chi_{\text{r}} & : \text{dimensionless residence time, } \chi_{\text{r}}=\frac{\tau}{\tau_L} \text{ [-]} \\
\end{align*}

아래참자

