 Removal Kinetics of Low Concentration Ammonia by Immobilized Nitrifier Consortium

Byong-Jin Kim, Jung-Hoon Lee and Kuen-Hack Suh†
Department of Chemical Engineering, Pukyong National University, Busan 608-739, Korea
(Received 21 February 2001; accepted 7 November 2001)

Abstract – The kinetics parameters for total ammonia nitrogen(TAN) removal in a airlift bioreactor using nitrifier consortium entrapped in polyvinyl alcohol(PVA) were evaluated by using a synthetic wastewater at 25 °C. Influent TAN concentration were 5.0 g/m³ with hydraulic residence time(HRT) ranging from 0.05 to 1.0 hr. TAN removal rate followed Monod kinetics in overall concentration range and maximum TAN removal rate and half saturation constant were 640 g/m³·day and 1.667 g/m³ hr⁻¹ respectively. For TAN concentration ranging from 0.6 to 4.8 g/m³, the TAN removal rate can be described by half order kinetics. If overall concentration range and maximum TAN removal rate and half saturation constant were 640 g/m³·day and 1.667 g/m³ hr⁻¹, the overall reaction rate was

\[
S_{\text{in}} - \frac{S_{\text{out}}}{K_m + S_{\text{in}}} + \frac{V_{\text{max}}}{K_m + S_{\text{in}}} = \frac{1}{\tau}.
\]

Key words: Ammonia Removal, Immobilized Nitrifier Consortium, PVA, Kinetics, HRT

1. 서 론

수중의 질소 성분은 유기 질소, 암모니아질소, 아밀산질소, 질산질소 등의 네 가지 형태로 존재하지만 비료리 처리수의 주요 형태는 유기질소와 암모니아질소로서 약 40%가 유기질소로 60%는 암모니아 질소이다[1]. 유기질소는 주로 단백질 및 요소와 결합되어 있고 체내에서 암모니아질소는 질소로 분해된다[2]. 암모니아는 수중에서 비이온성 암모니아(NH₃)와 이온성 암모니아(NH₄⁺) 두 가지 형태로 존재한다. 종종의 pH에서 암모니아 99%는 이온성으로 존재하며 pH 9 이상에서는 비이온성 암모니아의 농도가 증가한다. 1 g/m³이상의 암모니아는 구리 파괴를 부식시키며[3] 비이온성 암모니아는 동물의 식단을 통해 자연적질수도에 지명적인 피해를 주게 된다[4]. 암모니아가 수로 방출되면 생물학적 삼화에 의해 질산산질소나 아밀산질소로 산화되면서 수중의 용존산소를 고갈시키므로 암모니아 질소를 산화형태로 제거하는 처리 공정이 필요하다. EPA[1]에서는 이온형을 사용하는 수체의 비이온성 암모니아 농도를 0.02 g/m³ 이하로 유지하도록 권장하고 있다. 비이온성 암모니아가 수중에 존재하는 비율은 pH 7-8.8일 경우 0.06-2.45%이므로 수중의 비이온성 암모니아를 0.02 g/m³ 이하로 유지하기 위해서는 수중 암모니아 질소(TAN, total ammonia nitrogen)를 2.5 g/m³ 이하로 유지하여야 한다. 또한 용산수의 중 암모니아질소의 수분은 0.5 g/m³ 이하이므로 2.5 g/m³의 농도를 가지는 수중의 암모니아 질소는 고도의 기술이 요구된다.

수중의 암모니아를 제거하는 방법으로는 미생물을 이용하는 생물학적 처리방법이 주로 사용되고 있으며[5] 질량축의 이온 수중수질은 일반 미생물에 비해 매우 낮으며 이로 인해 미생물을 높이지 못하고 부식속도가 높은 생물학적 처리방법에 대해서는 미생물의 탄소가 필요하게 되어 공정의 효율이 저하되는 단점이 있다[6, 7]. 포괄 과정에서 미생물을 이용한 처리방식이 추가적인 부드러운 고도의 작용을 고려한 연구가 필요할 것으로 보인다.

†To whom correspondence should be addressed.
E-mail: khsuh@plnu.ac.kr
2. 실험

2-1. 고정화 절차세균군

본 연구에서 사용한 고정화 절차세균군은 절차세균군(PVA)에 포함 고정화하여 고정화 절차세균군의 재고와 사용한 절차세균군은 휘발성산물 순열에 사용하였으며 그 방법은 Suh 등(10)의 연구와 동일하게 수행하였다.

고정화 절차세균군은 PVA-boric acid(15)을 이용하여 제조하였다. 3.000rpm에서 10시간 원심분리기에서 많은 양의 절차세균균을 4.5%(D/W)로 회합하고, 30%의 PVA-HC(saponification: 100%; degree of polymerization: 2000) 용액과 동량의 무색 기초가 세기 전 있도록 천천히 혼합하여 PVA 15% 절차세균균 2.25%를 혼합용액을 만든다. 이 혼합용액을 정량관을 이용하여 일정한 속도로 8℃로 냉각한 폐상 boric acid 용액에 뿌어 넣으므로 고정화 절차세균균을 제조하였다. 이 때 고정화 절차세균균의 적정은 4mm였다.

2-2. 실험장치

본 연구에서 사용한 실험장치의 모습은 Fig.1과 같이 고정화 절차세균균을 이용하는 생물반응기로 split-cylinder형의 공기부식기 성물반응기를 제작하여 사용하였다.

공기부식기 성물반응기는 반응기에 부식 공기를 직접 부식 가이트에 고정화하여 공기와 혼합기도 부식 공기부식기 성물반응기를 제작하여 사용하였다. 성물반응기에 부식공기는 성물반응기 내부로 공기를 직접 부식 가이트에 고정화하여 공기와 혼합기도 부식 공기부식기 성물반응기를 제작하여 사용하였다. 성물반응기 내부로 공기부식기 성물반응기를 제작하여 사용하였다. 성물반응기 내부로 공기부식기 성물반응기를 제작하여 사용하였다.

본 연구에서 사용한 실험장치의 성물반응기는 최대 6cm, 높이 20cm의 아크릴관을 이용하여 제작하였으며 성물반응기는 18cm 높이에서 반응기 내벽 측면에 각 500m리터하였다.

발효나는 성물반응기가 공기와 성물반응기의 체적을 고려하여 반응기 내부의 최적 환경조건을 일정하게 유지하는데 성공적으로 성공하였다. 성공에 성공한 성물반응기를 이용하여 고정화 절차세균군의 용액을 성공적으로 유지하였고 성공에 성공한 성물반응기를 이용하여 고정화 절차세균군의 용액을 성공적으로 유지하였다.

2-3. 실험방법

반응기에 부식한 고정화 절차세균군의 양은 50mL로 반응기 내벽에 적히 10%(V/V)로 이용하였다. 실험에 사용한 암모니아 영구 계수는 Lauer와 Capdevielle(17)의 방법을 이용하여 Table 1과 같은 비율로 TAN 농도를 5±0.2g/m2로 조절하여 사용하였으며 유산수의 pH는 7.3±0.1로 받았다. 반응기 내의 온도는 25±0.5℃로 유지하였으며 수학적 처리시간은 1시간부터 0.05시간까지 총 12시간을 실험하였다. 고정화 절차세균군은 각 정전된 유산수를 각성 계수를 연속적으로 공급하였으며 1시간 간격으로 각 반응기 내의 계수를 재활용하여 실험하였다. 공급을 중단한 고정화 절차세균군에 대하여 저속도의 변화가 없고 충분한 윈도우를 공급할 수 있는 2.4v/m(12.1/min)(18)으로 공급하였다.

2-4. 분석방법

시료의 처분법은 의회 1회 수렴하였으며 공정한 치수력처리의 변화에 대한 반응기 출구 암모니아 질소 농도가 일정하게 유지되는 정상 상태에서 3회 시료를 처분하여 분석한 평균 값으로 사용하였다. 암모니아 질소 분석을 위하여 암모니아 산화 전극(Orion Research Inc., 9512BN)과 부착 ion meter (Orion Research Inc., 720A)를 이용하여 이온선택성 전극법[19]에 의하여 분석하였다. 질소산 질소 및 아기

Table 1. Composition of substrate nutrient(17)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Composition(g/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH4Cl</td>
<td>19.107</td>
</tr>
<tr>
<td>NaHCO3</td>
<td>48.570</td>
</tr>
<tr>
<td>Na2HPO4</td>
<td>2.197</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>2.211</td>
</tr>
<tr>
<td>MgSO4·7H2O</td>
<td>0.497</td>
</tr>
<tr>
<td>FeCl3·6H2O</td>
<td>0.076</td>
</tr>
</tbody>
</table>

Fig. 1. Schematic diagram of the experimental system using airlift bioreactor for ammonia removal.

1. Airlift bioreactor 7. Liquid outlet port
2. Water bath 8. Air inlet port
4. Screen 10. Peristaltic pump
5. Air distributor 11. Air pump
6. Liquid inlet port 12. Rotameter

유출구는 하강부 상부를 선택하였으며, 반응기 상부에도 고정화 절차세균균의 용액을 발기 위하여 유출구 아래에 미리 장치하였다.

일정한 속도를 유지할 수 있도록 생물반응기를 양면수로 내에 설치하였고 고정화 절차세균군의 용액과 절차세균군의 성형에 필요한 공기는 rotameter로 설치하여 일정한 윤동으로 공급할 수 있도록 하였다.

본 연구에서는 polyvinyl alcohol(PVA)를 이용하여 고정화 절차세균균을 제조하고 이를 공기부식기 성물반응기에 이용하여 저속도 암모니아 제거 실험이 수행되었다. 고정화 절차세균균에 의한 저속도 암모니아 제거에 있어 적절한 암모니아 저속도를 도출하고 이를 이용하여 저속도 암모니아 제거를 실험하기 위한 조건을 제시하였고 하였다.
3. 결과 및 고찰

3-1. 암모니아 제거의 속도지배 단계

포괄 고령화 절여수군의 암모니아 제거반응은 *Nitrosomonas sp.*의 암모니아 절소를 아질산성 질소로, *Nitrobacter sp.*가 아질산성 질소를 질산성 질소로 전환시키는 연쇄반응이다(2, 11, 20).

이와 같은 빠르게 연산 반응에서 반응물인 TAN의 농도는 수학적 제류시간이 길어질수록 감소하며 최종 생성물인 질산성 질소의 농도는 계속 증가한다. 그러나 중간 생성물인 아질산성 질소의 농도는 수학적 제류시간의 증가에 따라 증가하다가 감소하는 형태를 가지게 된다(21).

포괄 고령화 절여수군의 암모니아 제거 반응에서 수학적 제류 시간의 영향을 알아보기 위하여 수학적 제류시간을 1.0시간에서 0.05시간으로 감소시키면서 암모니아 제거 실험을 수행하였다. 실험기간 중 질산 반응물 영향으로 미치는 인자로 육존산 농도와 pH는 수학적 제류시간의 변화에 의하여 크게 변화하지 않고 각각 6.58±0.2 g/m^3, 7.55±0.2의 변화에서 육존산의 pH의 변화에 의한 암모니아 제거 속도의 영향은 없음을 것으로 생각된다.

Fig. 2의 5 g/m^3의 유기 TAN 농도에서 수학적 제류시간의 변화에 따른 유속수준의 질소 성분의 조정법에 따라 유속 변화를 도표화하였다. 그 결과 보고 바와 같이 TAN 농도는 수학적 제류시간이 0.05hr에서 0.375hr로 증가되면서 거의 직선적으로 감소하였으며 그 이후 감소폭 이 점차 줄어 들었으며 1.0 hr의 수학적 제류시간에서 0.37 g/m^3의 농도를 나타내었다. 아질산성 질소의 농도는 수학적 제류시간이 증가함에 따라 증가하여 0.25hr에서 0.32 g/m^3의 최고 농도를 나타낸 후 정지 감소하였으며 질산성 질소의 농도는 감력 TAN 농도와 증가하며 아질산성 질소 농도의 차이를 증가하였다.

![Fig. 2. Changes of compositions and concentrations of nitrogen compounds in effluent on different hydraulic residence time.](image)

암모니아나동도의 감소는 *Nitrosomonas sp.*의 암모니아 제거속도에 의해 결정되며 아질산성 질소는 전체 반응의 중간단계로서 *Nitrosomonas sp.*의 암모니아 제거속도와 *Nitrobacter sp.*의 효율 절산성 질소의 차이에 의해 그 농도가 결정된다. 절산단계에서 두 번째 반응의 반응속도는 첫 번째 반응속도보다 더 커질 수는 없으나 두 번째 반응속 도의 수단이 작용수록 증가하던 아질산성 질소의 농도가 커지게 되며 두 번째 반응이 전체 반응의 속도 결정 단계가 된다. 증간단계 아질산 성 질소의 농도가 낮은 유지될 경우는 첫 번째 반응이 속도 결정 단계가 된다(21).

Fig. 3 본 연구에서 나타난 수학적 제류시간의 변화에 따른 TAN의 제거속도와 질산성 질소의 생성속도의 변화를 나타내었다. 그 결과 보고 바와 같이 TAN제거속도와 질산성 질소의 생성속도는 수학적 제류시간이 증가함에 따라 점차 감소한다. TAN제거속도와 질산성 질소의 생성속도의 차이는 수학적 제류시간이 감소함에 따라 조그 줄어들었으나 그 차이는 크게 없음을 것으로 나타났다. 아질산성 질소에서 질산성 질소로 전환되는 반응 속도가 암모니아 가 아질산성 질소로 전환되는 속도의 거의 절반으로 증가하면 아질산성 질소의 최고 농도가 0.32 g/m^3로 전체 질소 산분의 6.4%만큼 차지하여 전체적으로 다른 성분의 비율에 비해 매우 작은 것으로 보아 전체적인 암모니아 제거에 있어 전체 반응의 속도를 지배하는 단계는 첫 번째 반응이라고 볼 수 있다. 따라서 저농도 암모니아의 제거에 대한 속도에 고히 있어서는 연쇄반응의 첫 단계인 암모니아의 아질산성 질소의 전환속도에 대한 속도시가 고려해야 된다고 생각된다.

3-2. 총 암모니아질소(TAN) 제거속도

포괄 고령화 절여수군을 이용한 질산반응 중 암모니아질소를 아질산성 질소로 전환시키는 *Nitrosomonas sp.*의 변화속도는 *Monod* 식(14), 1/2식(20), 1/2식(13)으로 표현할 수 있다. Fig. 4는 본 연구의 결과를 각 속도로 분석이 가능한 결과를 나타낸 것이다. *Monod* 식은 생물반응에서 가장 일반적인 형태로 다음과 같이 표현된다.

![Fig. 3. Changes of total ammonia nitrogen(TAN) removal rate and nitrate nitrogen(NO$_3^-$N) formation rate on different hydraulic residence time.](image)

\[r = \frac{r_{max} C}{K_r + C} \] \hspace{1cm} (1)

여기서 \(r \)는 포괄 고령화 절여수군에서 제거된 TAN의 제거속도, \(r_{max} \)은 포괄 고령화 절여수군제거시 증가한 TANE의 제거속도, \(K_r \)는 반포화상수이자
Fig. 4. The comparison between the experimental data and the three different kinetic models.

C는 TAN 농도이다.
포澜 고체화 절차에 따른 반응에서 반응기의 악모 나타미 절차 저속도는 고령화 절차에 따른 양과 비례하므로 식 (1)은 다음과 같이 될 수 있다.

\[R = -r \cdot \frac{V_p}{V_b} \tag{2} \]

여기서 \(r \)는 반응기 액자 저속 기준 TAN 저속도, \(V_p \)는 반응기 내에 무단한 고령화 절차에 따른 동반를 나타내며 \(V_b \)는 반응기의 액자 저속이다.
\(V_p/V_b \)는 고령화 절차에 따른 무단을, \(\tau \)는 \(\tau_{max} \)을 반응기 액자 저속 기준 화학 TAN 저속도, \(R_{max} \)로 두면 식 (2)는 식 (3)으로 정리된다.

\[R = -r_{max} \cdot C \cdot \frac{V_p}{V_b} = -r_{max} \cdot \frac{C}{\tau_{max}} \cdot \frac{V_p}{V_b} = \frac{R_{max} \cdot C}{\tau_{max}} \tag{3} \]

식 (3)의 \(R_{max} \), \(\tau_{max} \)는 다형 Lineweaver-Burk plot에 의해 구할 수 있다[20]. Lineweaver-Burk plot은 식 (3)의 이중 액자 트림 행렬로 가 장 보편적으로 사용하는 형태이다.

\[\frac{R}{R_{max}} = \frac{1}{K_s} + \frac{1}{R_{max} \cdot C} \tag{4} \]

일반적으로 Lineweaver-Burk plot을 이용한 선형화 분석 결과 상관계수 \(r \)가 0.993으로 나타나 고령화 절차에 따른 TAN 저속도는 Monod 식에 의해 잘 표현되었으며 최대 TAN 저속도 \(R_{max} \)는 640 g/m^3 day 반화산수용 \(K_s \)는 16.67 g/m^3이었다. 본 연구에서 반응기에 무단한 고령화 절차에 따른 반응기 액자 저속의 10%이며 고령화 절차에 따른 반응기 액자 저속의 6,400 g/m^3 bead-day로 추정된다.
\(K_s \) 값은 반응기의 기질과의 화학적 액자으로 나타내는 간접적으로서 이용될 수 있다[20]. *Nitr monas europaea*에 calcium alginat과 고령화에 고령화 카리온의 Ks가 30°C에서 5.95 g/m^3을 나타내며 van Ginkel 등[14] 연구 결과로 비교 본 연구 결과와 다른 1.667 g/m^3은 1/3정도로 낮은 것이다. 이로움은 보다 PVA나 calcium alginate보다 고령화 카리온의 무단화 과정의 확산저항이 더 적은 것으로 생각되며 절차에 따른 고령화의 저속을 더 우수하다고 생각된다.
1차 승수도는 반응속도를 표현하는 가장 간단한 형태 중의 하나로서 Monod 식의 경우 저속도에 대해서 식 (3)을 다음과 같이 쓸 수 있다[20].

\[R = \frac{R_{max} \cdot C}{K_s} \tag{5} \]

\[R_{max}/K_s \]는 하나의 속도상수로 볼 수 있으며 식 (5)는 다음과 같이 쓸 수 있다.

\[R = k \cdot C \tag{6} \]

여기서 \(k \)는 1차 속도식의 속도상수이다.
식 (5)에 의한 1차 속도식의 경우 반응물의 농도가 \(K_s \)에 비례 반응 속도가 384 g/m^3/day로 비용과 크게 나타나고 심리과정에는 0.3 g/m^3이하의 농도 이 때문에 무감응의 것으로 나타났다.

Monod 식은 고령화 참여물에 의해 압도적으로 저속도를 전반적으로 잘 표현할 수 있으나 분수면에 농도를 볼 수 있는 도구로서 모두 포 함하고 있어 반응을 모델링하는 데 있어 불편하다. 이를 단순화하기 위해 저속도에서 0차 속도식, 고도에서 0차 속도식으로 나누어 저 속도시에는 이와 유사하지 않고 1차 속도시에 영향에 대해서는 적응이 불가능하다[20].

Nijoh(3)는 저속도와 높은 저속도 반응을 이용한 실험결과 반응 속도가 102910 측정치와 절차에 따라 잘 적중될 수 있다고 하였고 그 이상의 농도때에 대해서는 0차 속도식을 적용하였다.
본 연구에서 목적에 따른 저속도 약모니아의 경우 TAN 저속도가 최대 반응으로 도달하지 않고 절차에 따라 비율적으로 1/2차 속도식을 사용할 경우 보다 용이하게 이용할 수 있다. 이러한 반응기 사용 판례에 있어 포괄적으로 의심 고령화를 반응기 저속도 기준은 간주로 간주하고 저속도 약모니아에 대한 저속도식으로 이용할 수 있는 것으로 사용하였다.

3-3. TAN저속도식의 비교
계수처리에 있어 가장 중요한 것은 처리 수의 수용이며 반응기를 저속도시로 압도적 수용의 수용을 압도할 수 있다.
본 연구에서 사용한 반응기내 반응은 혼합Modes로 압도적 반응기내의 TAN 농도와 유속수가 TAN 농도로 동등하고 가장 반응이 TAN에 대한 절차에 보진수계식은 다음과 같다.

\[QC_o = QC + RV \tag{8} \]

여기에서 \(Q \)는 계수의 유용량이며 \(C_o \)는 유용수와 유속수의 TAN 농도이다.
이제 반응기 저속도, \(\tau \)이 Monod 식을 따르면 동일 시 (8)에 식 (3) 을 대입하면 식 (9)과 같이 될 수 있으며 이의 유속수 농도, \(C_i \) 내에 정리하면 식 (10)을 얻을 수 있다.

\[C_o = C + \frac{R_{max}}{K_s + \frac{C}{R_{max}}} \tag{9} \]

\[C = \left[1 + \frac{C_i - R_{max} \cdot K_s}{R_{max} \cdot K_s} \right] + 4 \cdot C_o \cdot K_s \tag{10} \]

여기서 \(t \)는 수용력 체계시간(\(V_i/Q \))이다.
반응기간 저속도 1차 속도식과 1/2차 속도식을 따르다고 가정한 경
수리와 동일하게 시 (8) 와 (7) 를 더하여 \(C \) 에 대해 정리하면 1차 속도식은 식 (11)이다. 1/2차 속도식에 대해서는 식 (12)를 얻을 수 있다.

\[
C = \frac{C_0}{1 + \tau k_1} \quad (11)
\]

\[
C = \frac{1}{2} \left[C_0 - \frac{k_1}{k_2} \right] + \left(\frac{k_1}{k_2} \right)^{1/2} \left(\frac{4C_0 - k_1}{k_2} \right) \quad (12)
\]

그림 5는 본 연구에서 얻어진 각 속도식의 평가배율을 이용하여 유입수의 TAN 농도가 5.0 g/m\(^3\)일 때 수력학적 추출시간의 변화에 따른 유출수의 TAN 농도변화를 예측하여 실험결과와 비교한 것이다.

그림 5에서 보면 바와 같이 Monod 식은 본 연구에서 사용한 시험영역 전반에 걸쳐 실험결과에 잘 부합되는 것으로 나타났고 1/2차 속도식의 경우에도 전반적으로 실험결과와 잘 일치하였다. 그러나 1/2차 속도식의 경우 수력학적 추출시간이 길어지면 유출수의 TAN 농도가 낮아질수록 Monod 식에서 비해 낮은 TAN 농도를 표현하는 것으로 나타났다.

실험결과에 의한 1차 속도식은 불은 수력학적 추출시간에서, Monod 식에 의한 1/2차 속도식은 유출수의 농도가 낮아지는 간 추출시간의 영역에서만 실험결과에 부합되는 것으로 나타났다. 즉 1차 속도식의 속도 상수를 구하기 위해 적절한 기울기와 실제 폭의 기울기와 부합하는 영역에 대해 시만 추출시킬 수 있었다. 이로하여 1차 속도식의 경우 속도식이 극단적이고 속도상수를 구하기 용이한 동정정이 있으나 난 볼때에 대해서는 적정기저치가 극단하였다. 그러나 유출수의 수질이 좋은 영역에서만 변화하는 경우 처리방법과 같은 공정에 대해서도 논 의 볼때에 대한 속도 변화가 있으므로 단순화한 속도로 모용할 수 있을 것으로 생각된다.

그림 6은 비교적 낮은 영역에서 Monod 식과 잘 부합하는 1/2차 속도식의 적용범위를 고려하기 위하여 1-6 g/m\(^3\)의 유입 TAN 농도에 대해 수력학적 추출시간의 변화에 따른 총 TAN 농도의 C/C\(_0\)의 변화를 나타낸 것이다.

그래서 나타난 바와 같이 1/2차 속도식에 의해 얻어진 총 TAN 농도의 추계결과는 유입수의 농도가 감소함에 따라 수력학적 추출시간이 길어질수록 TAN 농도가 낮아질수록 Monod 식의 차이가 급격히 커지게 되었다. 유입 TAN 농도가 1-2.5 g/m\(^3\)일 경우 높은 농도에서는 Monod 식과 잘 부합하였으며 0.6-4.8 g/m\(^3\)의 총 TAN 농도에 대해서는 Monod 식보다 낮은 총 농도로 표기하였다. 6 g/m\(^3\) 유입 TAN 농도에 대해 1/2차 속도식에 4.8-6.8 g/m\(^3\)의 총 농도에서 Monod 식보다 낮은 농도를 나타내었다. 이렇게 보면 1/2차 속도식이 잘 적용될 수 있는 농도 범위는 0.6-4.8 g/m\(^3\)으로 생각된다.

3-4. 공정 설계의 방법

3-4-1. 조수처리 시설 설계시 수력학적 추출시간의 설계

포괄 고정화 절차에서 유입수를 이용한 설계방법에 의한 TAN 농도는 수력학적 추출시간의 영향을 크게 받는다. 수력학적 추출시간은 반응기의 제거속도와 제거율을 결정하는 중요한 변수이며, 반응기 용량을 결정하는 목표인치이다.

조수처리 시설은 저농도의 오염물을 수질 기준에 따라 감소시키며 시설로서 처리된 농도가 매우 낮은 농도을 요구한다. 따라서 유입수의 수질에 따라 필요한 총 농도를 얻을 수 있는 수력학적 추출시간의 영역이 매우 중요하다.

Monod 식은 분산확률을 반응기에서 일정한 수입 농도를 얻기 위해 필요한 수력학적 추출시간은 식 (9)를 다음과 같이 간단히 수학적 추출시간에 대해 정리함으로써 구할 수 있다.
Fig. 7. The changes of required hydraulic residence time on influent total ammonia nitrogen for various removal efficiency.

\[\tau = \frac{C_0 - C}{R_m C} \]

(13)

\[\tau = \frac{x C_0 (K + 1 - x) C_0}{R_m (1 - x) C_0} \]

(14)

Fig. 7은 1-6 g/m^3의 유입 TAN 농도에 대하여 95-99.6%의 제거율을 얻기 위해 필요한 수력적 체류시간의 변화와 국내 용수공 수질 기준인 0.5 g/m^3과 그 10%인 0.05 g/m^3의 TAN 농도를 얻기 위해 필요한 수력적 체류시간의 변화를 나타낸 것이다.

그림에서 보는 바와 같이 각 제거율의 유입 농도의 변화에 따른 필요 수력적 체류시간 차이는 크지 않은 것으로 나타났으며 제거율이 증가함에 따라 요구되는 수력적 체류시간은 더욱 증가되었다. 용수 기준인 0.5 g/m^3의 TAN 농도를 얻기 위한 수력적 체류시간은 6 g/m^3의 유입 농도에 대해 0.9 hr을 필요로 하는 것으로 나타났으며 용수기준의 10%인 0.05 g/m^3의 TAN 농도를 얻기 위해서는 7.7 hr의 수력적 체류시간을 필요로 하는 것으로 예측되었다.

3-4-2. 순환식 공정 적용시 수력적 체류시간

순환식과 양어장의 순환수 처리 시스템은 사용수 대용 양모니아성 질소의 농도를 낮게 유지하는 것을 목적으로 한다. 순환수와 양어장의 수리공정은 일반적인 제거수리 공정과는 달리 수리공정에서 배출된 용수공이 사용수를 거쳐 다시 수리공정으로 회수되는 샘플 공정이다. 순환수공정의 경우 반응구를 한동안 동일한 제거효과를 유지하면서 1회의 투입을 통해 저농도 양모니아성 질소의 제거효과가 작동하기 때문에 1회의 투입을 통해 저농도 양모니아성 질소의 제거효과를 얻을 수 있으므로 반응구 1회 동안 양모니아성 질소를 유지하는 것으로 제거효과를 높게 유지하는 것이 더 중요하다.[20]

Monod 식을 따르는 혼합액을 반응구에서 유입 농도와 수력적 체류시간의 변화에 따라 얻어지는 TAN 제거속도가 일정한 유출 농도를 얻기 위해 필요한 수력적 체류시간은 식 (10)을 식 (3)의 대입하여 예측할 수 있다.

Fig. 8은 1-6 g/m^3의 유입 TAN 농도에 대하여 수력적 체류시간의 변화에 따라 얻어지는 반응구의 TAN 제거속도의 변화를 나타낸 것이다. 그림에서 보는 바와 같이 유입 농도가 낮아짐수록 반응구의 제거속도도 낮아지며 수력적 체류시간의 증가에 따라 제거속도가 감소하였다. 따라서 순환식 공정의 경우 농도를 얻기 위해서 반응구의 수력적 체류시간을 높게 유지하여야 하며 이는 유량의 증가는 동력비의 증가를 동반하므로 경제성 비교를 통해 수력적 체류시간을 결정하여야 할 것으로 생각된다.

4. 결론

PVA에 고정화한 절화사구군을 이용한 공기부식성 생물반응기를 이용하여 5 g/m^3의 농도의 암모니아 히드록시수소염에서 고성과 절화사구군의 암모니아 제거효과를 도출하고 이를 이용하여 최적의 암모니아 제거 공정을 설계하기 위한 조건을 제시하였다. 수하적 체류시간의 증가에 따라 유출 TAN 농도는 감소하였으며 암모니아 질소의 농도는 수하적 체류시간이 증가함에 따라 증가하여 0.25 hr에서 0.32 g/m^3의 최고 농도를 나타내 후 점차 감소하였다. 절하 성 질소는 농도는 감소된 TAN 농도와 증가된 암모니아 질소의 차이를 증가하였다.

TAN 제거속도는 수하적 체류시간이 증가함수록 높고 유량이 감소하여 수하적 체류시간이 증가함에 따라 점차 감소하는 것으로 나타났다. 절하성 질소 제거속도의 수하적 체류시간이 0.1 hr일 때 최대 성 정속도를 보였고 0.05 hr의 TAN의 총 농도를 나타내 후 점차 감소하였다. 절하 성 질소는 농도는 감소된 TAN 농도와 증가된 암모니아 질소의 차이를 증가하였다.

TAN 제거속도는 수하적 체류시간이 증가함수록 높고 유량이 감소하여 수하적 체류시간이 증가함에 따라 점차 감소하는 것으로 나타났다. 절하성 질소는 수하적 체류시간의 증가에 따라 제거속도가 증가하며, 최대 제거속도는 640 g/m^3 reactor · day, 반포화상수 Ks는 1.667 g/m^3였다. Monod 식에 의해 반응구의 유출 농도 정량식은 다음과 같다.

\[C = \frac{1}{2} \left(C_0 - t R_m - K_s + \sqrt{(C_0 - t R_m - K_s)^2 + 4 C_0 K_s} \right) \]
0.6-4.8 g/m²의 TAN 농도 변화는 1/2차 속도식에 식합과 잘 부합하였으며 속도상수 k₃은 235 (g/m²)¹/₂ · day였다. 1/2차 속도식에 의한 반응기의 용수 농도 추정식은 다음과 같다.

\[
C = \frac{1}{2}(2C_O - \tau^2k_1^2 + \sqrt{4\tau^2k_1^2(4C_O - \tau^2k_1^2)})
\]

정수처리 시설에 본 공정을 이음할 경우 국내 속도수 수질 기준인 0.5 g/m³의 TAN 농도를 얻기 위한 수력적 처리시간은 6 g/m³의 유입 농도에 대해 0.9 h를 필요로 하는 것으로 나타났다.

높은 가속도를 요구하는 차원상 공정에 적용할 경우 반응기의 수력적 처리시간을 줄여 약수록 높은 가속도를 얻을 수 있는 것으로 나타났다.

감 사

본 연구는 한국과학재단의 지역대 학우수과학자 지원사업(과제번호: 2000-1-30700-005)에 의하여 수행된 결과임으로, 저자에 감사드립니다.

사용기호

\(\tau\) : TAN removal rate based on bead volume [g/m³ · day]
\(\tau_{\text{max}}\) : maximum TAN removal rate based on bead volume [g/m³ · day]
\(C\) : TAN concentration [g/m³]
\(C_O\) : TAN concentration of influent [g/m³]
\(k_1\) : first order rate constant [day⁻¹]
\(k_{1/2}\) : 1/2th order rate constant [g/m³ · h¹/₂ · day⁻¹]
\(K_s\) : half saturation constant [g/m³]
\(Q\) : flowrate [m³/day]
\(R\) : TAN removal rate based on reactor volume [g/m³ · day]
\(R_{\text{max}}\) : maximum TAN removal rate based on reactor volume [g/m³ · day]
\(V_B\) : total volume of bead in reactor [m³]
\(V_R\) : working volume of reactor [m³]
\(x\) : conversion, 1-C/C₀ [-]

그리고문자

\(ε\) : ratio of entrapped microorganisms volume to reactor volume [-]
\(τ\) : hydraulic residence time [hr or day]

참고문헌