Ion Exchange Behavior for Mixed Solution of Sr and Cs Ions with Potassium Titanate

Jei-Kwon Moon†, Hyung-Tae Kim*, Yong-Gun Shul*, Eil-Hee Lee and Jae-Hyung Yoo

Korea Atomic Energy Research Institute
*Dept. of Chemical Engineering, Yonsei University

(Received 8 September 2000; accepted 26 October 2000)

Key words: Ion Exchange, Potassium Titanate, Equilibrium Modeling, Strontium and Cesium Ions

Abstract – Potassium titanate ion exchanger was synthesized to use for removing strontium and caesium ions, which are the heat generation radionuclides in HLLW (high level liquid waste). Adsorption equilibria for Sr and Cs ions were evaluated with the synthetic potassium titanate (K$_2$Ti$_6$O$_{13}$) ion exchanger. The potassium titanate ion exchanger showed selective adsorption for Sr ion over Cs ion. The distribution coefficients for Sr and Cs ions at pH 2 were 3.300 mL/g and 200 mL/g, respectively. Standard isotherm equations such as Langmuir, Freundlich, Dubinin-Polanyi equations were used to model the experimental data. For the binary data modeling, even though all models fit the data, Freundlich model and Dubinin-Polanyi model fit the experimental data more correctly. For multicomponent system, however, the experimental data could not be predicted from binary data using standard isotherms. While, a modified version of Dubinin-Polanyi equation, which is a semi-empirical equation, fit the experimental data accurately.

Key words: Ion Exchange, Potassium Titanate, Equilibrium Modeling, Strontium and Cesium Ions

1. 서론

고주영 방사성폐기물의 장반감기의 핵을 포함한 다양한 방사성 핵종을 포함하고 있기 때문에 환경 침해를 위하여 균분리 및 소멸처리 하는 연구가 진행되고 있다[1-7]. 특히 고주영 폐기물에 존재하는 Sr-90 및 Cs-137 등은 일반생 핵종이며 방사성의 위협도가 크기 때문에 핵종 분리 공정에서 빠르게 처리해야 한다. 이 두 핵종은 신생 용액에서 다른 핵종들과 혼합되어 있어서 섬유질의 분리가 중요하게 실현 안전성을 고려하여 주로 무기 이온교환체를 이용한 연구 결과가 많이 발 표되고 있다[8-13].

†E-mail: njkmoon@kaeri.re.kr
이론적 고찰

2.1. 분배 합수 및 분리 인자

방정식 (1)은 이온교환의 성능 평가 인자로 다음과 같은 분배계수\(K_d\)가 갖추어 사용된다.

\[
K_d = \frac{C_e}{C_s} \quad \text{[mL/g]}
\]

여기서,

\[
C_e = \text{equilibrium concentration in solid phase [meq/g]}
\]

\[
C_s = \text{equilibrium concentration in liquid phase [meq/mL]}
\]

분배계수는 회분석과 column을 이용한 연속작 방법으로 측정이 가능하고 특이한 현상 존재시 적용된 경우 식 (1)과 같이 표현된 분배계수는 column의 성능 평가에 사용될 수 있다. 즉, mL/g로 표현된 분배계수는 이온교환의 1글로 처리할 수 있는 최대 인자를 의미한다. 이 분배계수는 같은 운도에서 다른 고온도에 영향을 받으므로 이러한 영향을 고려하여 분리 인자\(\alpha = K_d C_s / K_d 0\)를 도입하여 평가하기도 한다.

2.2. 흡착 등분석

2.2.1. Dubinin-Polanyi 모델

미세 기온을 갖는 흡착하에 대한 단일 기계 흡착하에 대하여 Dubinin 및 공동연구자들 [22, 23]은 Polanyi의 의해 저명한 흡착 포먼트 개념으로부터 평행판계를 개발하였다. 미세 기온에 흡착층은 영상과 같은 기온을 보인다고 가정하며 흡착층과 동일한 온도에서도 포먼트의 자유에너지의 차이가 흡착 포먼트, \(\varepsilon\)로서 다음과 같이 표현된다.

\[
\varepsilon = \Delta F = \int_{p_{min}}^{p} Vdp = RT \ln \frac{P}{P_m}
\]

여기에서 \(\Delta F\)는 자유에너지 변화를 나타낸다. 이러한 형태의 흡착에서 린의 흡착-흡착계간의 흡착평형은 온도와는 무관한 특성함수로 나타날 수 있다.

\[
W = Q(p + \epsilon)
\]

여기에서 \(W\)는 흡착에 의해 제한된 미세 기온의 부피이고, \(p\)는 흡착상의 밀도를 나타낸다. Dubinin은 특성함수 Gaussian 형태로 간주하고 다음과 같은 Dubin-Radushkevich 방정식을 유도하였다.

\[
W = W_n \exp \left(-\frac{k'\epsilon^2}{\beta^2}\right)
\]

여기에서 \(W_n\)는 단단을 둔장당 흡착계의 미세기온 충 부피를 나타내고 \(\beta\)는 천개계수, \(k'\)는 상수다. Ruthven [24]는 이 기계흡착 모델을 해석에 사용할 수 있도록 다음과 같이 나타내었다.

\[
\frac{W}{W_n} = \frac{QV}{Q_n V_n} = \exp \left[-\frac{1}{\beta^2} \left(\frac{C}{C_s}\right)^2\right]
\]

여기에서 \(Q, Q_n\)은 각각 고온도의 평균 농도 및 고온도 농도를 나타내고, \(C, C_s\) 각각 해당에서의 평균농도 및 고온도를 나타낸다. \(K\)는 실험데이터의 일치를 위해 결정되는 상수이고 \(k'\)는 기계상수이다. 단일원분산의 Dubinin-Polanyi 모델은 단단분산에 확대하면 다음과 같다.

\[
\frac{(Q_1 + Q_2 + \ldots)V}{W_n} = \exp(-K\phi^2)
\]

여기에서,

\[
Q_n = \frac{W_n}{V_n}
\]

\[
V_n = X_1 V_1 + X_2 V_2 + \ldots
\]

\[
\frac{1}{\sqrt{R}} = \frac{X_1}{\sqrt{X_1}} + \frac{X_2}{\sqrt{X_2}} + \ldots
\]

\[
\phi = -RT \ln \left(\frac{C_1 + C_2 + \ldots}{C_s}\right)
\]

식 (6)을 다시 정리하면 식 (11)의 결과.

\[
\Sigma Q_i = \exp[b_i + b_i \ln(\Sigma C_i) + b_i \ln(\Sigma C_i)]
\]

여기에서,

\[
b_i = \ln(q_i) = KR^2T^2 (ln C_i)^2
\]

\[
b = 2K R^2T^2 (ln C_i)
\]

\[
k = -KR^2T^2
\]

2.2.2. Langmuir 모델과 Langmuir-Freundlich 모델

이론적 분석은 이온교환에 단단유용도가 가장 많이 사용되어 모델로는 식 (15), (16)의 Langmuir 모델과 Freundlich 모델이 있다.

\[
Q = \frac{Q}{K/4c_B}
\]

\[
Q = k C^{1/n}
\]

여기서, \(Q, Q_n\)은 각각 고온도 및 고온도에서의 흡착상에 대한 평균농 도이고, \(Q_n\)은 고온도에서의 양이온에 대한 흡착농도 응답을 의미하며, \(k, k'\)는 각각 Langmuir 상수와 Freundlich 상수이다.
또한, 이를 모델은 다심층 흡착강도를 설명하기 위해 논리적 방법으로 확장가능하며 각각 다음과 같이 나타낼 수 있다.

\[\frac{Q}{Q_{\text{ss}}} = \frac{b \cdot C_i}{1 + \sum_{j=1}^{n} b \cdot C_j} \] \hspace{1cm} (17)

\[\frac{Q}{Q_{\text{ss}}} = \frac{b \cdot C_i^{1/n}}{1 + \sum_{j=1}^{n} b \cdot C_j^{1/n}} \] \hspace{1cm} (18)

여기에서 상수 \(b \), \(n \) 는 2실 분리 동등선 데이터로부터 얻는다.

영련된 Langmuir과 Freundlich식은 혼합된 Langmuir-Freundlich 식도 다실분의 해석에 사용되어 왔으며 다음과 같다.

\[\frac{Q}{Q_{\text{ss}}} = \frac{b \cdot C_i}{1 + \sum_{j=1}^{n} b \cdot C_j} \] \hspace{1cm} (19)

이 (19)는 LRC(loading ratio correlation) 모형이라고 하며, 이 (17), (18)와 마찬가지로 이론적인 기초가 결여되어 있으나, 수학적 단순성 때문에 실험 상관화를 쉽게 용이로 주로 사용한다.

3. 실 험

3-1. Potassium Titanate 제조

천료물질로는 SHOWA Chemical의 GR급 SrCO\(_3\)와 TiO_2를 반응 용액 1:4로 혼합하여 사용하였다. 고온 분말 상태의 혼합물을 압\(10^{2-3}\)Mpa에 넣고 1,000℃에서 150시간 동안시켜 potassium titanate (K\(_2\)TiO\(_3\))를 생성하였다. 제조된 potassium titanate는 XRD(Rigaku Co.)로 결정상을 확인하고 SEM(JEOL Co.; JSM 5200) 사진을 통해 모양 및 크기를 관찰하였다.

3-2. 이온교환 실험

K\(_2\)TiO\(_3\)에 대한 Sr와 Cs 이온의 단일 성분(이온성분) 및 혼합성분(3 성분)에 대한 이온교환 실험을 회로식으로 수행하였다. 분석 계수 측정 실험은 단일 성분의 경우 Sr와 Cs 이온 농도를 각각 0.002N으로 고정시키고 용액의 pH를 2-6으로 변화시킴으로써 그 영향을 관찰하였다. Cs 와 Sr 혼합용액에서 Cs 농도가 Sr의 분배계수에 비해 상대적으로 크다고 하면 Sr의 변화를 대표할 수 있었다. 이온 교환 효율은 Sr와 Cs 이온용액이 종합합을 일정량 취하고 이온 농도를 변화시키는 방법으로 실험하였고 평균 데이타 산정을 얻기 위해 3번의 반복실험결과를 평균하였다.

Sr와 Cs이온해석은 Aldrich Co의 GR급 Sr(NO\(_3\))와 Cs(NO\(_3\))를 사용하여 제조하였다. 실험 조건에 따라 혼합용액 10 mL를 취하여 이론에서 0.1g의 실험을 실시하여 15℃에서 24시간 동안 반응시켰다. 평형점에의 실험은 3번 와 0.2μL의 syringe 펌프로 성공 이온교환

4. 결과 및 고찰

4-1. Potassium Titanate 제조 및 특성화

K\(_2\)TiO\(_3\)는 용액으로 혼합한 Sr와 TiO\(_2\)의 반응 용액이 반응 용액, 반응 시간에 따라 변화되어 Sr와 Cs의 농도를 4로 하는 경우 900-1,000℃에서 50시간 이상 반응하는 경우 순수한 K\(_2\)TiO\(_3\)가 생성되는 것으로 보고되고 있다[25]. Fig. 1은 반응 용액을 4로 하고, 1,000℃에서 150시간 반응시켰을 때 생성된 K\(_2\)TiO\(_3\)의 XRD 분석결과를 표준시료와 비교하여 나타낸 것이며 순수한 4티탄산 칼륨이 생성되었다고 할 수 있다. 혼합성 단단한 병리 상태의 다단산을 분석하여 100 mesh size로 거친 분말을 무사감자 혼합으로 결합하여 Fig. 2에 나타내었다. Jung 등[25]의 이론 결과와 유사한 L/D=0의 정상 K\(_2\)TiO\(_3\) 분자와 편입 수 있었다.

4-2. Sr와 Cs 이온교환 기동

4-2-1. 분배계수

Fig. 3은 Sr-Cs-K\(_2\)TiO\(_3\) 이온교환에서 용액의 pH 2.0-6.0을 변화시켰을 때 Sr 및 Cs의 분배계수(K\(_D\)) 값의 변화를 나타낸 것이다. Sr 이온의 경우, pH=2의 강산영역에서도 분배계수(K\(_D\))는 약 3,300 mL/g로 높은 값을 나타내고,

Fig. 4는 혼합 용액에서 사용된 농도를 변화시켰을 때 그 결과가 Sr와 Cs의 분배계수에 대해 일반적인 결과는 나타내지 않았다. 이 결과는 티탄산 칼륨 이온교환성이 H\(^+\) 및 Cs\(^+\)이온보다 Sr\(^+\)이 분배계수를 높게 한다. Fig. 4는 원형 용액에서 사용된 이온의 농도를 변화시켰을 때 스트론튬이 Sr와 Cs의 주요 4티탄산 칼륨의 변화를 나타낸 것이다.
Table 1. Adsorption model parameters for Sr$^{2+}$ and Cs$^+$ ions with K$_2$Ti$_4$O$_9$

<table>
<thead>
<tr>
<th>Model</th>
<th>Coefficient units</th>
<th>Sr</th>
<th>Cs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir</td>
<td>Q$_m$[meq/g]</td>
<td>1.28</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>b[meq/mL]</td>
<td>50.23</td>
<td>82.97</td>
</tr>
<tr>
<td></td>
<td>r^2</td>
<td>0.94</td>
<td>0.76</td>
</tr>
<tr>
<td>Freundlich</td>
<td>K[meq/mL]</td>
<td>2.13</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>3.07</td>
<td>3.35</td>
</tr>
<tr>
<td></td>
<td>r^2</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>Dubinin-Polanyi</td>
<td>Q$_m$[meq/g]</td>
<td>1.82</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>k</td>
<td>5.16x10$^{-9}$</td>
<td>3.89x10$^{-9}$</td>
</tr>
<tr>
<td></td>
<td>r^2</td>
<td>0.98</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Fig. 7. Equilibrium models for Sr2+ ion in K-Sr-Cs ion exchange with K\textsubscript{2}TiO\textsubscript{4}.

Fig. 8. Equilibrium models for Cs+ ion in K-Sr-Cs ion exchange with K\textsubscript{2}TiO\textsubscript{4}.

Table 2. Parameters for modified Dubinin-Polanyi isotherm equation

<table>
<thead>
<tr>
<th>Isotherms</th>
<th>Coefficients</th>
<th>(b_0)</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr\textsubscript{2+} ion</td>
<td>0.391</td>
<td>0.277</td>
<td>0.012</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Cs+ ion</td>
<td>0.219</td>
<td>0.548</td>
<td>0.036</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

Figures 7, 8.

Pythagorean relation of \(K_2\text{Ti}_4\text{O}_9\).

![Image](image_url)