A Study on the Toluene Decomposition using an Adsorptive Dielectric Discharge Plasma

Yeoon-Seok Choi†, Young-Hoon Song, Seock-Joon Kim and Bu-Ung Kim*

Korea Institute of Machinery & Materials
*Dept. of Chemical Engineering, Busan National University
(Received 28 September 1999; accepted 7 February 2000)

요 약

저온도의 유대가스 처리목적으로 많이 연구되고 있는 지온플라즈마 기술을 이용하여 대기를 오염시키는 VOC의 일종인 툴루엔을 분해하는 연구를 수행하였다. 사용한 플라즈마는 일반적인 교류를 전원으로 사용하는 유전장 방전 플라즈마이며, 관행의 유전장 방전기에 흡착성이 좋은 다결정의 γ-Al2O3를 전자장에서 사용하였다. 툴루엔 분해기의 흡착성이 툴루엔 분해효율에 미치는 영향을 조사하기 위해서 흡착성이 없는 glass bead와 γ-Al2O3로 비교하여 실험하였다. 반응기는 인가전압은 19 kV, 16 kV로 하였고 반응온도는 25℃, 60℃, 100℃로 바꾸면서 실험하였으며 반응속도 및 활성화 에너지를 고찰하였다. γ-Al2O3가 glass bead보다 높은 분해효율 나타내었고, 온도가 높아록 분해효율이 높게 나타났다. 가열 실험결과를 유전장을 측면에서 살펴보면 유전기가 높은속도 좋은 툴루엔 분해효율을 나타내었다.

Abstract – Non-thermal plasma technologies were known to be effective for decomposition of dilute pollutant gases. In the present study the dielectric discharge plasma was examined in order to decompose toluene vapor, a kind of air pollutant VOCs. The dielectric barrier discharge plasma using the conventional AC as an electric power source was generated inside the tubular reactor in which the porous γ-Al2O3 beads were packed. In order to investigate the adsorptive effect of the packed dielectrics the non-porous glass bead was also examined and compared with the γ-Al2O3 for the abatement of toluene vapor. Experiments were carried out at the electric voltage of 16 kV and 19 kV and at the temperature of 25℃, 60℃ and 100℃ respectively. The kinetic velocity and activation energy of toluene decomposition reaction was studied in the γ-Al2O3 beads packed reactor. The γ-Al2O3 bead showed better performance for toluene decomposition than the glass bead. As the reactor temperature rising, the toluene decomposition rate also increased. Additionally the effect of dielectric constant of the packed dielectric was studied. The dielectric of higher dielectric constant showed better performance than that of lower one.

Key words: Dielectric Barrier Discharge Plasma, Packed Dielectric, γ-Al2O3, Adsorptivity, Decomposition, Toluene, Dielectric Constant

1. 서 론

지온 플라즈마(non-thermal or cold or non-equilibrium plasma)과 같은 가스장의 대기오염물질을 제거하는 기술의 개발이 국내외 연구소와 대학에서 활발히 이루어지고 있다. 외국에서는 수십년전 역사가 있지만 국내에서는 1997년에 처음으로 석탄화학발전소의 배출연료/배출을 위하여 한국중공업과 한국기계연구원에서 공동으로 2,000 Nm³/hr급 파이프라인플라즈마를 개발하여 발표하였고[1], 그 후 많은 연구들이 대학에서 지온플라즈마를 이용한 유대가스 처리기술을 연구하고 있다[2].

고온플라즈마에서는 일자, 이온, 전자, 중성분자 등이 모두 고온에 있기 때문에 지온플라즈마에서는 전자만 고온이고 배경가스는 주변온도와 같으므로 에너지 효율이 좋은 화학반응(energetic chemistry)을 유도할 수 있으며 저온도의 유대가스처리에 적합한 기술이다. 공기가 방전할 때, 점자인 eV의 에너지를 가지며 전자온도는 약 30,000 K 정도이다[3]. 고온의 전자는 전자에 의해 가속운동을 하면서 전자 avalanche를 일으키며 점자간 열동 형성은 전자와 이온화, 핵, metastable formation 등의 현상이 진행됨과 동시에

† E-mail: ychoi@mailgw.kimm.re.kr

423
리며, 스파크 등 여러 형태의 코로나발전이 일어나고 있으며 전자와 감소와 동시에 이온의 이동에너지(excitation energy)가 축적되어 발전적열도가 상승한다. 이 과정에서 O, OH, HO2와 같은 활성 산화물은 O2의 전위에 의한 VOCs 또는 SO2, NOx와 같은 유해가스를 산화시켜 무해화하고, 폐기물로 전환한다.

코로나방전은 여러 형태의 방전기로서 종류가 많으며, gaseous wire-cylinder, pin-plate, dielectric barrier, dielectric packed bed 등에 따라 변형된다. 임의의 상의 임이 존재하는 wire-cylinder, pin-plate, dielectric barrier, dielectric packed bed discharge에 주로 사용된다.

2. 유전체 방전이론

유전체 방전에서는 유전체로써의 방전을 가지는데 기준압력 임공의 비전율은 E_{0}의 1/3에 이르기로 다른 물질의 비전율은 항상 보다 큰 값을 가진다.

3. 실험장치

Fig. 2는 실험장치의 전체 구성을 보여주는 그림이다. 반응기의 사용된 barrier의 재료는 Pyrex(경 30 mm, 두께 1.2 mm, 길이 350 mm)이며,
Table 1. Applied electric power

<table>
<thead>
<tr>
<th>Dielectric</th>
<th>Temp.</th>
<th>Volt.(kV)</th>
<th>Wall P(W)</th>
<th>Current(mA)</th>
<th>Reactor P(W)</th>
<th>Efficiency(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass (d=3 mm)</td>
<td>High temp.</td>
<td>19</td>
<td>32</td>
<td>1.85</td>
<td>19.32</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>32</td>
<td>1.22</td>
<td>13.52</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>28</td>
<td>0.82</td>
<td>9.29</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>100 °C</td>
<td>19</td>
<td>54</td>
<td>3.14</td>
<td>37.68</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>42</td>
<td>2.26</td>
<td>23.44</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>34</td>
<td>1.59</td>
<td>14.43</td>
<td>42</td>
</tr>
<tr>
<td>γ-Al2O3</td>
<td>High temp.</td>
<td>19</td>
<td>40</td>
<td>3.67</td>
<td>39.9</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>40</td>
<td>3.09</td>
<td>28.9</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>34</td>
<td>2.67</td>
<td>22.24</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>100 °C</td>
<td>19</td>
<td>54</td>
<td>3.9</td>
<td>33.4</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>42</td>
<td>3.9</td>
<td>33.4</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>100 °C</td>
<td>16</td>
<td>42</td>
<td>2.1</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>33</td>
<td>1.29</td>
<td>13.9</td>
<td>42</td>
</tr>
</tbody>
</table>

Fig. 3. C3H8 decomposition by barrier discharge plasma; 25 °C, 10.2 LPM, γ-Al2O3 packed.

4. 결과 및 고찰

본 반응기에서 인가된 결과는 Table 1과 같았다. Table 1에서 전력공급효율은 순수로 반응기로 인가되는 전력을 벡터로 공급되는 전력으로 나눈 값으로 전력이 높음수록 효율이 좋음을 알 수 있다.

Fig. 3-5은 온도가 각각 25 °C, 60 °C, 100 °C임 때, 물체의 화학적 과정과 전기방전에 의한 물체의 농도 변화를 시간별로 나타낸 것이다.
Fig. 4. C₇H₈ decomposition by barrier discharge plasma: 60 °C, 10.2 LPM, γ-Al₂O₃ packed.

Fig. 5. C₇H₈ decomposition by barrier discharge plasma: 100 °C, 10.2 LPM, γ-Al₂O₃ packed.

Fig. 6. C₇H₈ decomposition efficiency dielectric: γ-Al₂O₃.

Fig. 7. C₇H₈ decomposition vs. time at 25 °C.

Fig. 8. C₇H₈ decomposition vs. time at 60 °C.

Fig. 9. C₇H₈ decomposition vs. time at 100 °C.

가 저수압수지로 감소하였고 curve fitting한 결과 반응공방도의 1차반응식에 근거하게 나타났다. Smolders 등이 wire-cylinder형 반응기에 서 펌프로套房방한 물로 온도를 제외한 실험에서도 반응물 농도의 1차 반응으로 나타났다[9]. 25 °C, 60 °C, 100 °C에 대한 반응물소수시간은 각각 3.4×10⁻² sec⁻¹, 4.74×10⁻² sec⁻¹, 10.17×10⁻² sec⁻¹이며 온도가 높아짐에 따라 반응물소수시간이 빨라지는 일반적인 경향을 보였고 있다. 또한 구체적인 반응물소수시간과 반응온도의 비례관계로 Fig. 10과 같이 Arrhenius plot을 하여 구한 활성화에너지가 3.2 kcal/mol로 나타났다. 이 값은 기체측량방식에서 일반적인 활성화에너지가 3.5-11.9 kcal/mol범위의 값은Joyce가 가까운 약호한 반응이며 두[10]. γ-Al₂O₃가 충전식 유전체 방식 툴라즘바른부에에서 물로온은 농도에 의존하는 산화시 레디감을 형성하는데 양호한 충전용유전체가 될 수 있다는 것으로 판단된다.
유전체 방전 폴라즈마의 특성에 관한 흡착의 영향을 살펴보기 위하여 사전에 없는 glass bead를 유전체로 하여 실험한 결과를 γ-Al₂O₃의 실험결과 비교하였다. Fig. 11, 12 및 13은 25 °C, 60 °C 및 100 °C의 물주에 분해실험결과이다. 절반 이하의 흡착도가 탈착도가 나타나지 않으므로 흡착현상이 없는 것을 알 수 있다.

Fig. 14는 glass bead에서의 흡착분해율을 나타낸 것으로, γ-Al₂O₃에 비해선 온도증가에 따른 분해율 감소는 약간 크지만 분해율은 10-50% 범위의 낮은 값을 보이고 있다. 이것은 흡착력이 강한 γ-Al₂O₃에 비해 비흡착성인 glass bead가 흡착력이 작기 때문에 폴라즈마 분해기 내에서 물주내의 채류시간이 감소하고 따라서 산화반응시간도 감소되어

<table>
<thead>
<tr>
<th>Fig. 10. Arrhenius plot of C₇H₈ at γ-Al₂O₃ barrier discharge plasma.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 11. C₇H₈ decomposition by barrier discharge plasma; 25 °C, 10.2 LPM, glass bead packed.</td>
</tr>
<tr>
<td>Fig. 12. C₇H₈ decomposition by barrier discharge plasma; 60 °C, 10.2 LPM, glass bead packed.</td>
</tr>
<tr>
<td>Fig. 13. C₇H₈ decomposition by barrier discharge plasma; 100 °C, 10.2 LPM, glass bead packed.</td>
</tr>
<tr>
<td>Fig. 14. C₇H₈ decomposition efficiency dielectric: glass bead.</td>
</tr>
<tr>
<td>Fig. 15. FTIR spectrum(γ-Al₂O₃, 100 °C).</td>
</tr>
</tbody>
</table>

따름 것으로 판단된다.

한편, 폴라즈마 반응기내에서의 물주내의 분해에 관한 변수는 반응시간, 휘류시간에 따라 전체의 시기로 변수가 되며, 따라서 반응기의 기하학적 구조와 사용한 유전체의 유전율이 관계된다. 본 반응기에서는 동일한 크기의 γ-Al₂O₃과 glass bead를 사용하였으므로 흡착성을 고려하지 않으면 기하학적 차이는 무시할 수 있고 따라서 유전체의 유전율을 변수로 생각할 수 있다. 유전율측정기(Hewlett Packard, 4194A)로 100 kHz에서 측정된 γ-Al₂O₃의 유전율은 214였고, glass bead는 9를 나타내었다. 따라서 (1)에서 γ-Al₂O₃를 촉매한 경우가 glass bead를 촉매한 경우보다 강한 전류가 형성되고 따라서 더 많은 산화산 데미열이 생성되어 궁극적으로 물주내의 분해율이 높아진 것임을 알 수

HWAHAK KONGHAK Vol. 38, No. 3, June, 2000
다. 그러나 총합기방과 전계기방의 종류에 따른 각각의 물질에 반응을
에 관한 영향을 정립적으로 해석하기 위해서는 혼합된 유전체 계절과
특정한 기여요소에 대한 전계기방의 적적선 산화성 계열의 성형에 관
한 상세한 연구가 필요한 것으로 판단되었다. 아울러 Fig. 15는 γ-Al₂O₃,
100℃의 FTR 스펙트럼에서 나타난 HCHO의 peak(Wave No. 2897)가
이 나타나는데 적합한 측면에서 플라즈마에 의한 물질의 반응반응으로
성형되는 성형물에 관한 정밀한 연구도 더 필요한 것으로 판단되었다.

5. 결론

물질을 유전체 방전 플라즈마로 분해할 때 물질의 전압 및 반응온도
및 충전유전체의 환경특성 및 유전율에 따른 반응작용은 다음과 같다.

(1) γ-Al₂O₃를 유전체로 사용했을 때 물질은 반응전압 및 반응온도의
중간에 따라 분해율이 증가하였으며 19 kV, 100℃에서 78% 및 16 kV,
25℃에서 34.6%의 분해율을 보였다.

(2) γ-Al₂O₃를 유전체로 사용했을 때 19 kV인가서 물질의 25℃,
60, 100℃에서 반응속도상수는 각각 3.4×10⁻³ sec⁻¹, 4.74×10⁻³ sec⁻¹,
10.17×10⁻³ sec⁻¹, 10.17×10⁻³ sec⁻¹ 있으며 활성상성 이익은 3.2 kcal/mol이었다.

(3) γ-Al₂O₃와 glass bead를 유전체로 사용했을 때 γ-Al₂O₃가 더 높
은 물질이 분해율을 나타내었다. 이것은 γ-Al₂O₃가 glass bead보다 활
성성이 높으므로 반응시간이 길어지면 이온거리이가Impossible이 glass bead보
다 높게 의하여 약한 전도성을 유지하지 산화성 계열은 더욱 많이 성
형하기 때문인 것으로 판단되었다.

사용기호

E : electric field intensity [V/cm]
V : electric voltage [V]
d : distance between emitting electrode and ground [cm]
t : dielectric thickness [cm]
ε : dielectric constant

고려문헌

2. Ham, S. W., Park, H. H. and Mok, Y. S.: HWAHAK KONGHAK, 37,
759(1999).
4. Hollahan, J. R. and Bell, A. T.: “Techniques and Applications of Plas-