Characterization of Inorganic Particles by Atomic Force Microscopy

Seung Bin Park

Dept. of Chem. Eng., KAIST, 373-1 Kisong-dong, Yusong-gu, Taejon 305-701, Korea
(Received 24 August 1998; accepted 26 July 1999)

Abstract – AFM (Atomic Force Microscopy) is a device to observe morphology in atomic scale. Applications of AFM for inorganic particle research, however, has not been visible because the roughness of particle sample exceeds the AFM scan limit. Static charging of the tip also makes it difficult to scan the sample without moving around the particles. In this report, zinc oxide particles of solid and hollow morphology and aluminas of smooth and rough surfaces were prepared by spray pyrolysis and characterized by AFM. It was found that the particles were not moving when the particles were dispersed in isobutyl alcohol (20 mg/ml) and post-treated at 150 °C in an electrical oven for 1 hour. The AFM was operated under the non-contact mode and the tip spring constant was 20-100 N/m. Under these conditions, it was possible to obtain 3-D images from all the particle samples and to differentiate solid and hollow particles from the phase images. The several hundred nanometer roughness of aluminas particles shown in SEM images was not observed by AFM, but the roughness of several tens of nanometer level was evident in AFM image analysis. It was also confirmed that the force-distance curve behaved differently for the hollow and solid zinc oxide particles.

Key words: AFM, Hollow Particle, Zinc Oxide, Spray Pyrolysis

1. 서론

이론적 해석에 따라 분석이 논문과 같은 전통적인 방법에 의해서는 크기, 조성, 향상에 관심하는 일이 용이하지 않다. 수많은 마이크로 크기가 입자 조성을 제조할 수가 없으나 입자의 크기가 마이크로 혹은 서브마이크로가 되면 특별한 분석기술을 사용하더라도 예상 혹은 기방법에 의해 입자 조성 제조해야 한다. 전자차로 기능성 제조로 사용되는 대부분의 분석의, 앞으로 예상되는 특수한 용도의 분석은 조성, 크기,에 대한 규격을 매우 엄격하게 일반적인 제조법으로는 달성하기 어렵다는 판단이다[1].

조합하여, 다양한 분계의 입자 제조가 용이하며, 입자의 형태를 형상 구조로 할 수 있고, 작은 액체 내에서만 바이어 앉아 위치에 따른 조정이 가능하다는 것이다. 또한 수 msec 내에서 수 조 내에 반응 및 소결이 일어나기 때문에 반응조건을 정확하게 조정하면서 우리가 원하는 결정면을 선택적으로 얻거나 용이하다. 그리고 가속도에 따라 제조된 입자의 내부가 비어 있거나 깨진 입자가 제조되는 단점이 있다.

입자의 크기를 조정하는 방법으로 SEM, TEM이 주로 사용되었다. 이것은 전자빔이 반사 또는 투과하여 이미지를 형성하는 것으로 제조된 입자의 크기가 작을수록 적합하다. 그러나 분족 일반화와 같이 내부가 비어 있는 입자가 제조되는 경우에는 SEM이 TEM으로 확실하게 구분하기 힘들 때가 있다. BINNF 등[5]의 이에 1980년에 처음 제안한 AFM(Fig.1)은 광학은 25 nm 되는 탐침을 입자 위로 주사하면서, 입자 표면과 탐침간에 작용하는 힘이 일정하게 되도록의 미세입주를 하여 탐침의 온도작용으로부터 입자의 형상을 관찰하는 방법이다. AFM을 응용하는 방법에는 주사형태로 탐침을 자위로 동결하여 점도에 의한 변화를 관찰하는 방법, 터널과 입자와 탐침 between the 탐침의 높이를 단계로 응용하는 방법 등이 있다. 일반적으로 탐침은 기세에 선택한 위치의 표면의 측정도가 높아 측정 가능하다. 반면의 점도는 시간의 강도가 작아지거나 tracking force가 작아질 경우 다양한. 이론에서 좋은 이미지를 얻기 위해서는 탐침의 종류, 탐침을 구동하는 탐침 holder의 종류, 탐침과 입자간에 작용하는 힘 등을 적절히 선택 조정해야 좋은 이미지를 얻을 수 있다[6,7].


그래서 본 연구에서는 AFM을 입자의 형상을 연구하는데 응용하기 위하여 입자표면의 AFM 관찰에 적합하게 처리한 방법을 제안한다. 또한 AFM의 위해 속이 빨라 입자를 어떻게 구동할지, 3D 이미지, 패턴 이미지, force-distance curve를 통해 그 방법을 제시하고 입자의 특성 연구에 있어서 AFM의 한계를 감안한다.

2. 실험

2-1. 분족 일부분에 의한 단차이온 입자 제조


입자의 제조 과정은 Fig. 2의 방법과 같다. 잔산이온과 초산이온을 급속온 유속을 0.2 M 동료로 제조해서 5 mL/min 속도로 공기 용액 기체와 함께 액적 발생장치로 응용한다. 이 용액은 FEAG에서 기공의 크기가 수십 마이크론의 범위로 펌프를 통과하면서 상관에서 60 torr 압력으로 정하여 2.5 마이크론 크기의 액적으로 분산한다. 발생된 액적은 800°C로 유지되는 반응기를 통과하면서 중복 분배과정을 거치게 되고 종종으로 입자수집기에 모이게 된다. 초산이온으로부터 제조된 산화이온 입자는 제조 당시에 나노사이즈 입자로 존재하나, AFM 수자에 의해 산화 실리콘에 코팅되고 열처리를 받아온 음도에서도 소결현상이 두꺼워지게 나타난다. 잔산이온을 이용로부터 제조되는 산화이온 입자는 바에 만족이 되어 마이크로 크기로 존재한다.

2-2. 입자의 표면 형상이 다른 알루미나 입자의 제조

알루미나를 분족 일부분에 의해 제조할 경우에는 산화이온 입자의 경우와 달리 구형이면서 속이 비어 있으면 많은 입자가 만들어진다. 단지 AIP(aluminium isopropoxide)를 원료로 사용하는 경우에는 정산 알루미늄을 원료로 사용하는 경우에는 표면의 형상이 다른 입자가 되는 것으로 보인다. 제조 과정과 응용 조건은 산화이온 입자를 제조하는 과정과 동일하게 FEAG를 이용해서 제조하였다. 단 AIP을 사용하는 경우 에는 사전에 AIP과 물을 혼합한 후 수소와 속동에 의해 알루미나를 만들고 한다. 이 물을 공급을 받아 핀테이저를 시켜 응용을 만든 후 액적 발생기에 투입한다.

2-3. 제조된 입자로부터 AFM, SEM, XRD제조

제조된 입자들은 이소투발재로에 20 mg/mL의 분산시간 후, 1 시간 초음파 후에 교반을 시킨 다음, 분산시킨 후 응적을 한 방울 밀어내고 코팅시간 후 상온 건조시험이다. 이것을 다시 150°C 정도의 오분에 넣고 약 1시간 정도 열처리를 하였다. 이렇게 함으로써 제조된 입자 입자의 크기를 표면에 잘 부착되어 AFM 수자 도중 흐린 형상에 의해서 응직이는 것을 발전히 볼 수 있었다. 실산이온과는 거의 크기 8 mm, 세로 8 mm 정도로 잔산이론 응직(직경 10 mm)에 들어
2-4. 분석에 사용된 기기

AFM은 Digital Instrument사에서 제조된 Nanoscope IIIa 모델을 사용하였으며 STM은 Philips사의 S35M 모델을 사용하였다.

3. 결과 및 토론

3-1. AFM의 3-D 및 페이즈 이미지에 의한 산화아연 입자의 형상

먼저 단단한 입자에 의한 산화아연 입자의 경우는 SEM 관찰에 의하면 Fig.3과 같다. 일부 입자의 표면은 주름있고 일부는 깨어진 것을 알 수 있다. 이 SEM 사진으로부터는 깨어지지 않은 입자의 속이 비어 있는 것을 알 수 있다. 즉 Fig.4(a), (b), (c)의 페이즈 이미지들 보면 입자의 가운데가 약간 떨어진 것 이외에는 전혀 입자의 속이 비어 있어 보이지 않는다. Fig.4(a)의 단면에 대한 높이의 변화는 Fig.4(d)를 보아도 의외적으로 입자의 속이 비어 있는지 알 수 있다. 그러나 Fig.4(b)의 페이즈 이미지를 보면 입자의 속이 비어 있음을 알 수 있다. 표면의 높이가 깊이고 표면의 조성이나 기계적 성능이 다른 때에 페이즈 이미지가 다르게 나타나는데, Fig.4(b)에는 입자의 내부가 비어 있기 때문에 AFM 페이즈의 구분하는 점의 진행과 주사하는 점의 진동사에 페이즈차이가 심하게 나게 된다. 그 결과 Fig.4(b)와 같은 이미지가 형성되기 때문이다.

반면에 상업적으로 판매하는 산화아연 입자(Junsei Chemical Co. 99.9%)는 속이 비어 있지 않다. 따라서 페이즈 이미지도 3-D 이미지와 크게 차이가 나지 않는다. Fig.5(a)를 보면 크기가 2.5 마이크로 미터에 이르고 입자의 형상도 동일하지 않으며 표면이 거칠고 여러 개의 입자가 모여있는 것으로 보이며, Fig.5(d)는 Fig.5(a) 입자의 중단면의 높이 변하는 둘다. 높이가 0.5 마이크로미터를 알 수 있다. 여기서 중요한 것은 Fig.4(d)와 비교해 볼 때 Fig.5(b)의 페이즈 이미지에서 입자가 비어 있는 증거를 볼 수 없다.

초산아연을 분리 염분해제의 경우에도 속이 비어 있지 않은 입자가 만들어지는 것으로 알려져 있다([11]). 그러나 기본 입자가 수십 나노미터이다. AFM 실험 제조조건인 150°C로 가열하는 경우에는 SEM으로 관찰한 결과, Fig.6과 같이 대부분의 입자가 소결이 일어나 거칠어진 형태를 형성하게 된다. 소결된 입자들에 AFM으로 관찰해 보면 Fig.7(a), (b), (c)에서 보는 바와 같이 입자의 속이 비어 있는지는 보이지 않는다. 이상 3-1)에서 다른 종류의 산화아연 입자를 AFM으로 관찰해 본 결과 속이 비어 있지 않은 입자의 소결이 이루어지지 않았다. AFM의 페이즈 이미지를 보면 속이 비어 있는 것을 알 수 있다. SEM이나 TEM을 이용하는 경우에는 깨진 입자들에 대해서만 속이 비어 있는 것을 알 수 있는 반면에 AFM으로는 깨지지 않은 입자라도 속이 비어 있으면 다르게 나타난다는 것을 의미한다.

3-2. 알루미나 입자의 거칠기 정도

알루미나 입자의 형상을 관찰하기 위해 Al2O3(Aluminum Isopropoxide)와 정전알루미늄을 개별 전구체로 하여 분말 염분해에 의해 입자를 제조한 결과 Fig.8, 9와 같은 형상의 입자를 얻었다. 이 SEM사진에 의하면 Al2O3를 사용하는 경우(8)에 표면의 형상이 좀 가라앉는 것을 알 수 있다. 이 경우도는 SEM 사진으로 보아도 명확한 AFM을 이용한 경우에는 정상적으로 거칠기를 표현할 수 있다. 이를 위해 산화알루미나 belang(Al2O3)로 제조된 알루미나, 그리고 알루미늄 나이트레이트로부터 제조된 알루미나 입자 등 3가지 징을 AFM으로 주사한 후 화학 해석 소프트웨어 SPIP v3.0을 이용해 서 거칠기를 계산한 결과 산업용 알루미나는 12.7 nm, Al2O3로부터 제조된 알루미나 입자는 6.19 nm 나이트레이트로부터 제조된 입자는

![Fig. 3. SEM image of hollow zinc oxide particles prepared from zinc nitrate solution.](image)

![Fig. 4. (a) 3-D AFM image of hollow zinc oxide particles prepared from zinc nitrate solution. (b) Phase image of the hollow particle. (c) Enhanced 3-D image. (d) Height profile across line “A”.](image)
Fig. 5. (a) 3-D AFM image of commercial zinc oxide particles. (b) Phase image of the commercial particles. (c) Enhanced 3-D image. (d) Height profile across line “A”.

Fig. 6. SEM image of solid zinc oxide particles prepared from zinc acetate solution.

Fig. 7. (a) 3-D AFM image of solid zinc oxide particles prepared from zinc acetate solution. (b) Phase image of the solid particle. (c) Enhanced 3-D image. (d) Height profile across line “A”.

Fig. 8. SEM image of alumina particles prepared from aluminumisopropoxide(AIP).

3.29 nm이다. 여기서 거칠기는 다음과 같이 정의된다.

\[ S_b = \frac{1}{MN} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} \| z(x_k, y_l) \| \]

여기서 M, N은 각각 가로 세로 맷판의 개수이고 z(x_k, y_l)은 x_k와 y_l 지점에서의 높이다. Fig. 8, 9에서 볼 때는 거친 정도가 최소한 수십 내지 수백 나노미터 정도 될 것으로 예상되나 AFM으로 관찰할 경우 에는 이보다 더 낮은 수준의 거칠기를 정량적으로 알 수 있다. 특히 입자의 거칠기를 측정할 때는 주사하는 영역의 크기에 크게 좌우ประโย. SEM에서 보는 거칠기가와 AFM에서 보는 거칠기가 다른 이유가 바로 이 때문이다. 본 실험에서는 한 개의 입자에서 약 100 nm × 100 nm 부분만을 위해서 얻은 결과를 이 밖에 거칠기는 단점의 종류, 주
사향의 조건에 따라 조급액 달라질 수 있으므로 현대적인 비교에는 표준 샘플이 필요하다. 주사 조건이 같을 경우에 상대적인 차이는 약
수 있다. 표본의 격렬은 입자의 생장 배치각도와 관련이 있다. 따
라서 좀 더 정량적인 해석방법을 개발하고 주시하는 조건 등을 표준
화하면 입자 생장 배치각도는 알아내는데 AFM이 중요한 역할을 할
것으로 예상된다. 또한 입자의 멜리 측정을 용이하게 하기로 격렬을
측정량 약을 현상이나 새로운 외부의 형성 등을 나노미
터의 수준에서 명확할 수 있을 것이다.

3-3. Force-distance Curve에 의한 입자의 상향 차이 구분

3-3-1. Force-distance Curve

 Force-distance Curve는 AFM 탐침이 사료 표면으로 이동하다가 탐
침이 저료에 닿는 순간부터 탐침이 사료에 가까워지는 응력의 증가
동작이다. Fig. 1에서 보듯이 탐침 끝이 굴착되는 정도는 반사한
PNP (Position Sensitive Detector)에 의해 전압으로 환산되고 이것은
은 다시 calibration 과정을 거쳐 탐침의 이동거리로 환산된다. 이
동작에서 탐침의 스프링 상수를 묶음하여 탐침의 저료에 가까워지는 응
력이 닿는다. 결과적으로 Fig. 10에서 x축에는 탐침의 사료간의
거리, y축에는 응력의 증가나 키로 그려져 변하기 때문에 이를 간단
히 force curve라고 한다. 단, 입자의 실제 이동 거리와 탐침 끝
이 굴착되는 정도로부터 환산한 이동거리에 차이가 생기므로, 이것은
점두거리(penetration distance)라고 한다.

 가장 이상적인 force-distance curve라고도 그 모양이 간단하지 않다.
Fig. 10에서 보듯 그림의 오른편에서부터 탐침이 사료 표면에 근접하
면(실제로는 생장도가 접근하는 것이지만 평행상 탐침이 접근하는 것으
로 생각한다) 인력에 의해 순간적으로 탐침이 표면에 접촉한다. 이 상
태에서 계속 탐침이 사료 측으로 움직이며 탐침은 다시 반대편으로
계속 균열된다. 이 지점부터는 이상적인 경우 탐침의 이동거리와

Table 1. Relative slopes of the AFM force-distance curve for various types of particles

<table>
<thead>
<tr>
<th>Types of particles</th>
<th>Relative slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh-cleaved mica</td>
<td>1</td>
</tr>
<tr>
<td>ZnO particle prepared from zincacetate</td>
<td>1.05±0.08</td>
</tr>
<tr>
<td>ZnO particle prepared from zincnitrate*</td>
<td>0.88±0.08</td>
</tr>
<tr>
<td>Commercial alumina particle</td>
<td>1.13±0.08</td>
</tr>
<tr>
<td>Alumina particle prepared from AIP</td>
<td>1.02±0.08</td>
</tr>
<tr>
<td>Alumina particle prepared from alumina nitrate</td>
<td>1.00±0.08</td>
</tr>
<tr>
<td>Titania particle prepared from TTP by sol-gel method</td>
<td>1.05±0.08</td>
</tr>
<tr>
<td>Degussa P25 titania</td>
<td>1.04±0.08</td>
</tr>
</tbody>
</table>

*Initial slope is 0.5 but experimentally approached to 0.88±0.08.

Fig. 9. SEM image of alumina particles prepared from aluminum nitrate solution.

Fig. 10. Typical force-distance curve.

3-3-2. 입자의 Force-distance Curve의 상향 차이

 본 연구에 의해 재조정된 입자는 기저적 성질이 본질과 같
은 수 없다. 따라서 일부 입자들 사이에 응력이 미묘히 닿거나 일치가 많은
입자로 존재하기 때문이다. 따라서 입자의 경우에는 force-distance curve
를 해석하는데 주의가 요구된다. 본 연구에서는 재조 정상
상태에서 입자의 상향에 차이가 나는 상황을, 알루미나 입자, 타니아
와 심리가 입자들에 대해 force curve의 상대적인 기울기의 변화를
측정하였고, 그 결과는 Table 1과 같다. 기우는 상태를 미야
카를 사용하였다. 그 이론은 사용한 펜스의 스프링 상수 20-100 N/
m임은 임의로 정확한 값을 알지 못하고 탐침의 이동에 따른 전반
의 변화도 calibration하기 보다는 기울기의 상대적인 값을 해석하였
다. Table 1에서는 반하와 같이 입자의 종류나 입자의 재조 공정에
관계없이 탐침과 사료간의 거리에 따른 탐침이 굴착되는 기울기가 거
외의 이동과 동일하다는 것을 알 수 있다. 이것이 의미하는 바는 현
재 본 실험에서 탐침의 사료에 가까워 있는 1 GPa정도의 압
력으로는 여기서 재조정 입자가 단 한 번의 변형을 하고 있음을 의미한
다. 박.jackson의 경우 0.5 GPa의 압력에서 변형이 없으며 견적
의 변화가 일어날 수 없다. 실험의 결과는 6과 13에

3-3-3. 속이 빠른 입자의 Force-distance Curve

 산업에서 입자를 절삭하여 전구체부의 재조정에는 Fig. 3
에서와 같이 속이 빠르고 AFM의 빠른이미지지 보다 Fig.
4(0)와 같이 속이 빠르게 있는 것을 알 수 있다. 속이 빠른 입자의 기
제적 성질을 변화로 탐침은 force-distance curve에 Fig.
11과 같이 탐침이 입자의 표면에 닿을 때 75 nm 만큼 이동할 때까지는 굴착
은 정도의 slope가 정상적인 경우보다 1/2 정도로 느리게 옮겨진다.
그러나 그 이후부터는 초기에 전구체부의 재조정 입자의 force-
distance curve에 Fig. 12와 마찬가지로 기울기가 정상적으로 옮겨가게
AFM 관찰을 위한 입자 사료 제조 방법으로 이소부탈감고를 용액에 20mg/mL 정도 분산시킨 후 150℃ 전기 오븐에서 한시간 정도 열처리하여 AFM을 주시하는 도중 입자가 용이하는 현상이 없었다. 주시하는 조건으로서 비결측모드에서 스프링 상수가 20-100N/m인 탐점을 사용하였다. STM(Scanning Transmission Microscopy)과 TEM(Transmission Electron Microscopy)의 결과와 비교해 볼 때, 단순히 이미지를 보는 수준에서는 AFM이 결로 유지되지 않았다. 그러나 부드러운 산화연 입자의 경우와 같이, 입자 내의 물질변화가 있을 때 발생하는 위상의 변화를 아웃에서 입자의 불균일한 기계적 특성 변화를 관찰하는 경우에는 AFM이 더 유용한 것을 확인하였다. 또한 입자의 측정에 이르는 경우의 force-distance curve에서는 탐점이 입자에 접근할 때 따라 초기 가용비가 최종 가용비보다 1/2밖에 되지 않았다. AFM은 주시하는 시점에서의 동기에 관한 정보를 주기 때문에 표본의 거칠기를 계산할 수 있었다.

감 사

참고문헌