Preparation of Porous Alumina Membrane by Anodic Oxidation in Sulfuric Acid

Yoon-Ho Chang*, Chang-Woo Lee* and Yeong-Min Hahn*

School of Chemical, Polymer & Biological Eng., In-Hu Univ., Incheon 402-751, Korea
Dept. of Chem. Eng., College of Eng., Dankook Univ., Seoul 140-714, Korea

(Received 1 December 1997; accepted 2 September 1998)

Abstract — Porous alumina membranes were prepared by anodic oxidation using DC power supply of constant current mode in an aqueous solution of sulfuric acid. The aluminum metal plate was pretreated with thermal oxidation, chemical polishing and electropolishing before anodic oxidation. Membrane thickness, pore size and distribution were examined with several anodizing conditions; reaction temperature, cumulative charge, electrolyte concentration and current density. Scanning electron microscopy was used to determine pore size, pore density and membrane thickness. The pore size and thickness of membrane were dependent on the cumulative charge, the reaction temperature, the current density and the concentration of sulfuric acid. The membrane pores obtained uniform with almost straight cylindrical forms having average pore diameter of 20-40 nm and thickness of 30-60 µm.

Key words: Porous Alumina Membrane, Constant Current Mode, Anodic Oxidation, Straight Cylindrical Forms

1. 서론

알루미늄은 지나치게 Si 풍부한 금속원소로서 우수한 금속 학적 성질 즉, 낮은 밀도, 기계적 기능성이 우수하여 공업적으로 대단히 유용한 금속이다. 이러한 재질의 특성 이외에도 표면분산의 개선을 통해 공업적인 이용을 보다 풍부하게 하기 위한 알루미늄의 양극화 피막이라는 단순화의 증가, 전자제료의 이용 및 장착의 목적으로 100년 이상의 연구가 계속되어 오고 있는 실정이다. 일반적 으로서 알루미늄은 산소에 대한 화학번화성이 대단히 높고 표면에 고 치밀한 자기선화피막(10 nm) 형성하여 대기 중에서의 내식이 좋으나, 이러한 피막은 공업적인 용도에 유효할 수 있을 정도의 내식 및 우수한 표면 특성을 가질 수 없다. 따라서 강한 부식성 분위기나 경도가 요구되는 경우에는 인위적으로 자연선화 피막보다 두꺼 운 양적의 산화피막을 형성시켜 내식성을 증가시키고 있으며, 이러한 피막형성처리로 인해 공업적으로 그 응용범위가 확대되고 있는 실정이다[1-3]. 자연피막을 형성하는 방법으로는 양극선화법, 플라즈마에 의한 방법, CVD에 의한 산화도 코팅 방법이 대표적으로 쓰이고 있다. 특히 양극선화법의 경우 피막의 두께를 쉽게 조절할 수 있으며, 처리방법이 간단하여 이 방법에 의한 공업화가 이루어지고 있다. 1920년대초 알루미늄 양극선화 처리기술이 처음으로 발명된 이후로 현재의 주류로, 동도, 조형, 온도, 전압 및 전류밀도 등이 피막의 성질에 미치는 영향에 대해 많은 연구가 진행되어 왔다[4-10]. 일반적으로 양극선화에 의해 생성되는 피막은 구조가 매우 특이하며 세포가 없는 barrier 성과 세포가 잘 밀집된 porous 성으로 분류될 수 있으며, 다중질 피막의 구조는 Keller's model(콜리어 모델), Murphy's model(콜로이드 모델), Wood's model 등 여러 아웃들로 설명되고 있
다[7,8].

현재 국내외의 암모늄 농축의 양극화처리 기술은 barrier층을 이용한 전류 콘덴서용 capacitor용기류는 연구가 활발히 진행되고 실험정화되며 있으나, porous층을 이용한 응용분야는 전극과의 양극화처리 기술에 대한 연구가 부족하다(9-11). 양극화처리 기술은 현재 유도성 암모니아나 조용성을 기록된 바磬데, 몇몇 특성을 갖춘 친 농축을 결합하거나 비용을 줄이기 위해서 개발되어야 할 것으로 사료된다.

따라서 본 연구에서는 금성 양극화의 제조를 위해 식용용 99.8% 수용양모늄을 전기화학적 방법으로 양극화처리하여 감성 양모늄 알루미늄을 제조하고자 하였다. 양극화처리를 보다 좋은 품질을 얻기 위해서, 전극의 크기, 전류밀도 및 전극의 모양 등의 엘레기과 과정을 행하였으며, 전극과 처리에 의해 양극화처리가 행하였다. 이들의 조건의 변화에 따라 형성된 나공성 알루미늄막의 제조, 용해 및 barrier층의 용해에 의하여 나공성 알루미늄막을 제조하였다.

2. 실험방법

본 실험에서 공급할 알루미늄을 양극화하여 양극화처리와 동일한 조건으로 2시간 동안 압축하여 금속에 입각하여 2시간 동안 압축하여 압축한 시료의 과정으로서 580°C에서 15분간 공기 봉분한 가압에 서 양극화를 실시하고 시료 처리가 갖추고 있는 표면의 지정자와 자 연면적의 피막을 위해 3.5vol% HPO4로 45g의 CrO3를 첨 가한 용액 중에서 80°C로 10분간 화학적분을 시행한 후 H2PO4-H2SO4(7:2:1) 용액 35g의 CrO3를 첨가한 용액에서 40°C로 유지하면서 28.7A의 일정한 전류로 10분간 전극처리를 행하였다. 전 시행에 가까운 직근 면에 분비한 출력을 첨 가고 에도스투에 수확 해 섭취하게 만들어서 채리처리를 행하였다. 전처리과정이 끝난 시료의 최차분비를 압축성을 얻기 위하여 시료의 원반을.oauth으로 scaling한 후 양극화처리를 행하였다.

2.3. 양극화

전극할응용 0.20°C의 반응 중량의 농도 5.0-20wt%, 전류밀도 5.30mA/cm²의 방법에서 전극할응용을 1.000-2.500°C의 조건에 전극류 방식에 의하여 양극화처리를 행하였다. 또한 전극류의 도수로 각각 하던 작업을 하여 이러한 양극화를 행하였다. 양극화 기준의 응용수로 양극화방식을 수행한 후에 양극화적 물의 용해가 필요하였다. 이를 위하여 인상속으로 barrier층의 용해가 필요하였다.

Fig. 1. Schematic diagram of experimental procedure.

2.4. 알루미늄막과 barrier층의 용해

앞서 양극화처리의 시험과 하던 다공성 알루미늄막을 분리하고 0.1M CuCl2에 20wt% HCl를 첨가한 용액의 막간 투명한 알루 미늄 기판을 넣고 etching하여 용해과정에서 막간을 얻었다. 알루 미늄 기판의 용해의 상단에 큰 반응박을 수관으로막의 다공성 응용하려면 기간을 용해하였다. 또한 전극할응용에서 양극화처리에 의한 제조된 알루미늄막은 barrier층의apore층을 갖는 이중구조를 갖는다. 따라서 다공성 막으로 이중구조를 갖는 이중구조의 용해가 필요하였다. 이를 위하여 인양속으로 barrier층의 용해가 필요하였다.

2.5. 기기분석

2.5.1. 표면조도의 측정

화학공학 제36권 제5호 1998년 10월
여 평균을 높일 것으로 열전화시 알루미늄 표면에 불균일한 산화막 형성으로 인하여 오히려 표면조도가 커지는 것으로 보아 전처리 공정 중 가장 먼저 수행해야 되 것으로 사료되며, 화학 및 전기화학
을 거치 시험의 표면조도가 전처리 하지 않은 시료에 비하여 상대적으로 매끄러운 표면을 가짐을 알 수 있다.

2-2. 반응온도의 영향
양극상환액에 의한 산화 작용의 얇은, 불균일한 산화막이 있는 전
해액에서 생기된다고 알려져 있다. 그러나 동일한 전처리조건과는 전
해액의 온도에 따라 특세가 달라진다. 전해액 중의 알루미늄의
표면조도가 100배 이상이 공정 조건에 따라 대조되는 알루미늄의 표
면을 나타낸 SEM 사진이다. 3-3에 보이는 두 간의 전해액의 온도가 20℃에서는 전해액에 의한 표면의 특세가 크게 상향하여 면의 표면이 손상되어 알루미늄의 표면 구조가 급격히 달라진 것을 알 수 있다. 3-3는 전
해액의 온도가 10℃로 양극상환액을 적은 알루미늄의 표면으로서 면의 특세가 정상적인 특세로 변하였으나, 표면의 특세가 특세가
이온 변환과 세포사이의 백이 형성되어 전해액이 온도를 높일수록
전해액의 온도가 20℃에서는 전해액에 의한 특세가 정상적으로 변한다. 3-3는 전
해액의 온도가 10℃로 양극상환액을 적은 알루미늄의 표면으로서 면의 특세가 정상적인 특세로 변하였으나, 표면의 특세가 정상적으로 변할 수 있다. 반면
3-3에서 간의 전해액의 온도가 0℃에서는 전해액의 특세가 두
가지로 나뉘어 메커니즘 표면을 가짐을 알 수 있다. 3-3에 보이는 두 간의 전해액의 온도가 20℃에서는 전해액에 의한 특세가 정상적으로 변하였으나, 표면의 특세가 정상적으로 변할 수 있다. 반면
3-3에 보이는 두 간의 전해액의 온도가 0℃에서는 전해액의 특세가 두
가지로 나뉘어 메커니즘 표면을 가짐을 알 수 있다. 3-3에 보이는 두
가지로 나뉘어 메커니즘 표면을 가짐을 알 수 있다. 3-3에 보이는 두
가지로 나뉘어 메커니즘 표면을 가짐을 알 수 있다.
전처리 후에 오랜 시간 노출되어 세공의 벽이 미소하게 용해되는 세공확대(pore widening) 현상이 발생된 것이다. 따라서 본 연구에서는 이후부터서의 용융성이 높은 각의 두께가 30-60μm 정도를 보이는 전기장 1,000℃을 동일하게 가하여 양극상화를 행하였다.

3-4. 전류밀도의 영향
전처리상작용의 양극상화반응의 발달을 위한 암모니아 개방성은 용액 내의 이온들의 종류와 그 농도에 따라서 변화한다. 전기장 1,000℃, 전류밀도 1,000℃에서 발생한 전류밀도의 농도변 전류밀도에 따른 세공 직경의 Fig.6에 도시되었다. Fig.6에서 보는 바와 같이 전류 전류밀도의 농도가 5.0%에서 전류밀도 5.0%를 높이면 전류밀도가 증가함에 따라 세공직경도 작고 커지는 경향을 보이고 있다. 이러한 결과는 세
울 목관식이기 위해 전류의 집중현상이 발생하여 이곳의 온도 상승
이 발생하며, 온도상승으로 인한 전해지의 환성가능성은 용해작용이
증가하여 산화물의 용해는 더욱 크게 발생한다. 이러한 연쇄반응에
의하여 porous 층이 생성하게 되는데 이동한 온도 조건에서 전류밀
도가 증가할수록 전해지의 집중도가 증가하고, 온도가 많이 상승
하여 전해지의 활성이 그만큼 증가하게 된다. 따라서 전해지의 성
격 형성되는 것임. 또한 동일한 온도 조건에서 전류밀도가 증가함에
따라 이온교류 효과가 증가하여 양극산화반응 초기에 산화막의
생성속도가 증가함으로서 barrier층을 두꺼워 생성시키는 동시에 전
극과 전해지 사이의 이온충을 두꺼게 형성하여 전압의 상승을 가져
오게 된다. 한편, 황산전해지의 온도가 5 wt%의 높도에서 전류밀
도가 낮은 경우 전도성이 저하되는 방식이 있는데 이는 저온도 조건에서
전류밀도가 낮게 되면 전도성이 낮아지면서 생긴 막이 오랜 시간 전
해지에 노출되어 전류 주변의 용해가 일어나 전해지에 현상이
발생했기 때문으로 생각된다.

3-5. 전해지의 온도의 영향

Fig. 7은 전기량 1,000 C, 전해지의 온도 0 °C에서 각 전류밀도별 황
산 전해지의 온도에 따른 세포중량을 도출한 것이다. Fig. 7에서 보는
바와 같이 전도성, 전류밀도 변화는 전류밀도에서 황산
전해지의 온도가 5 wt%의 조건에서 세포중량은 가장 크며, 이 온도
상성이 높이 전해지의 온도가 증가함수록 오히려 세포중량이 감소
하고 있다. 이는 동일한 전류밀도 쪽 동일한 이온교류 효율에서 황
산 전해지의 온도가 증가함수록 전해지에 의한 용해작용의 증가로 초
기 형성되는 barrier층이 상대적으로 약화되면서 초기 전해지면이 감소
하게 된다. 따라서 황산 전해지의 온도가 증가함수록 더 많은 전도
성을 형성할 수 있게 되면서 동일한 전류밀도에서 전해지의 온도
가 증가함수록 전류밀도는 커지고 있다. 한편, 저온도에서는 전류밀
도가 낮은 수목이 커지는 것을 볼 수 있는데 이는 앞서 설명한
바와 같이 전도성이 낮아져 생긴 막이 오랜 시간 전해지에 노출
되어 전류 주변으로의 용해가 일어나 전해지에 현상이 발생했기 때
문이다.

각 전류밀도와 전해지의 온도 조건에 따라 전해지의 온도 0 °C, 전
기량 1,000 C으로 양극산화반응을 종결한 후 전해지의 알루미나
이온 농도를 ICP로 분석하여 Fig. 8에 나타내었다. Fig. 8에서 알 수
있는 바와 같이 전해지의 온도가 증가함수록 전해지의 알루미나
이온은 증가하고 있으며, 전류밀도가 낮은수록 전해지의 온도에
따라 이온이 증가하고 있다. 특히 전류밀도 5 mA/cm²의 경우 온도
에 따른 영향이 크게 나타나고 있다. 이는 낮은 전류밀도로 양극산
화를 형성한 경우 반응시간이 상대적으로 길어서 전해지 중에 악의
노출시간이 길어 용해가 많이 악이 난기 때문이다.

3-6. 막의 성질

황산 전해지로 양극산화에 의해 제조된 알루미나 막의 결정구조
를 확인하기 위하여 XRD 분석을 행한 결과 유정형의 알루미나막
은 확인하였으며, 제조된 막의 성분을 확인하기 위하여 FT-IR 분석
을 행한 결과를 Fig. 9에 나타내었다. Fig. 9에 나타난 바와 같이 1,150

Fig. 8. Ion concentration vs. electrolyte concentration at various current density.
[Temp. : 0 °C, Cumulative charge : 1,000 C]
cm⁻¹ 부근에 약한 Al-O 결합과 550-850 cm⁻¹에서 강한 Al-O 결합 (750 cm⁻¹ 부근에서 tetrahedral Al-O bond, 550 cm⁻¹ 부근에서 octahedral Al-O bond) 특성 peak를 보이고 있다. 이는 선형 연구자[14] 에 의한 Al₂O₃의 FT-IR 분석 결과와 일치하고 있는 것으로 보아 알루미늄 산화막의 성분은 알루미나임을 알 수 있다.

3-7. 미의 두께 및 기하구조
Fig. 10은 전해액의 온도 0℃, 황산 전해질의 농도 20 wt%, 전류밀도 20 mA/cm², 전기량 1,000 C의 조건으로 양극산화를 행하여 제조된 알루미나 미의 두께를 나타낸 SEM 사진이다. Fig. 10(a)에서 나타난 바와 같이 알루미나의 표면과 두께가 매우 균일한 곳이 형성됨을 알 수 있으며, Fig. 10(b)는 다중층 미의 단면을 확대하여 보이게 되므로 적신성의 전구구조가 잘 발달되어 있음을 확인할 수 있다.

Fig. 11은 1,000 C의 전기량으로 양극산화를 행한 경우 본 연구에서 행한 전해액 농도조건에서 전류밀도별 온도에 따른 알루미나막의 두께를 비교한 결과로 전해액의 온도가 증가함에 따라 용해도가 증가하여 생긴 알루미나막의 두께가 현저하게 늘어짐을 알 수 있다. 이는 온도가 높을수록 전해작용에 의한 표면으로부터의 용해 작용이 활발하여 표면이 손상을 입어 세포를 관절할 수 없음을 이론적 증실해 주고 있음을 시사하고 있다. 또한 전류밀도가 낮을수록 이온전이가 느리게 산화막의 생성속도가 둔화되어 전류밀도, 온도에 따라 전해액의 성장속도가 상대적으로 반응시간이 상대적으로 길어져 전해액에 의한 용해가 많이 일어나 마이를 낳지 않는 것으로 사료된다.

Fig. 12는 전해액의 온도 0℃, 황산 전해질의 농도 15 wt%, 전류밀도 5 mA/cm², 전기량 1,000 C의 조건으로 양극산화를 행하여 제조된 알루미나막의 두께를 나타낸 SEM 사진이다. Fig. 12(a)에서 보는 바와 같이 양극산화 시 초기에 생성된 barrier막의 경우 세포는 존재하지 않으며, 육각주 모델(Keller model)과 유사한 맥이 형성됨을 알 수 있다. Fig. 12(b)는 황산 전해액에서 양극산화시 생성된 barrier막을 입산식료액으로 녹여내 후의 알루미나막의 사진이다.

본 연구에서의 각 전해조건에 따른 세포형성과 세포밀도를 Table 3에 나타내었다. 반응온도가 높아짐에 따라, 알루미늄산에서 황산 전해액의 농도가 높아짐에 따라 전해액에 의한 용해작용이 활발하여 표면에 세포이 손상을 입어 마공성이 악화되므로 이로인하여, 반응온도 10℃에서 보는 바와 같이 전해액의 농도가 높으면 전류밀도를
4. 결 론

전기화학적인 방법의 하나인 액광신화법을 이용하여 다공성 알루미나막을 제조하는 연구를 통하여 다음과 같은 결론을 얻을 수 있었다.

(1) 전기장의 조절로 막의 두께를 쉽게 조절할 수 있었으며, 전해질의 농도가 낮을수록, 전류밀도가 증가할수록 막의 두께는 증가하였다.
(2) 반응온도가 낮을수록 전해질의 의화수의 강소로 막의 두께는 두꺼워지며, 막의 표면에서 색제가 소실을 일으키지 않은 우수한 다공성 알루미나막을 얻을 수 있었다.
(3) 전해질의 농도가 낮으면 전류밀도를 낮게, 높으면 전류밀도를 높게 하여 매끄러운 표면의 알루미나막을 얻을 수 있었다.

(4) 황산전화액에서 액광신화에 의한 생성된 신화막은 기하구조 면에서 육각주 모티(Keller model)와 유사한 원통형 직선구조를 갖는 모양의 알루미나막이 얻어졌음을 확인할 수 있었다.
(5) 전류밀도 및 알루미나막의 높도 분로로 세공적공을 조절할 수 있으 며, 세공적공의 일정한 세공포로가 일정하고 적절한 세공을 가지는 다공성 알루미나막의 제조가 가능하다. 이때 세공적공은 20~40 nm이고, 세공밀도는 2.1~9.2×10^8개/cm^2의 범위를 갖는 알루미나막을 얻을 수 있었다.

감 사
본 연구는 한국과학연구원 특성기초연구비(96-05-02-04-01-3) 지원으로 수행되었으며 지원에 감사를 드립니다.

참고문헌
1. Wernick, S. and Pinner, R.: "The Surface Treatment of Alumi-