A Study on the Preparation of Partially Activated PAN Composite Fiber Containing Zeolite Particles

Duk Kun Hwang, Kyung Taek Jung, Yong Gun Shul*, Wha Sub Lee*, Jei Kwon Moon** and Won Zin Oh**

Dept. of Chem. Eng., Yonsei University
*Textile Polymer Lab., KIST
**Korea Atomic Energy Research Institute, Taejon, Korea

(Received 30 May 1997; accepted 12 August 1998)

요약

아크릴로니트릴모노머를 전구체로하여 제올라이트를 함유한 부분활성화 PAN 복합체 섬유를 제조하였다. 중량평균 분자량 630,000이고, 다분산지수가 1.30인 방식로 두께의 평균을 제어았던 기술법(dry-jet wet spinning technique)으로 제조하였다. 제올라이트를 함유한 35-40 μm 두께의 PAN 섬유는 전극형 인산화형을 통해 배양도를 증가시켰다. 조건에 따라 얻어진 PAN 섬유에 비하여 제올라이트를 함유한 PAN 복합체 섬유는 89%의 중량도를 나타내었다. 고려와 부분활성화 상태는 적외선분광 분석법과 X선화학 분석법을 이용하여 확인하였다. PAN 섬유의 부분활성화 이후에도 제올라이트의 함유에 따른 특성 변화를 X선화학 분석법을 이용하여 확인할 수 있었다. 제올라이트를 함유한 PAN 복합체 섬유는 새로운 유용한 복합 홍차제로 사용할 수 있을 것으로 사료된다.

Abstract — Partially activated polyacrylonitrile(PAN) composite fiber containing zeolite particle was prepared by using acrylonitrile(AN) as a precursor. Weight average molecular weight(Mw) and polydispersity index of spinning dope was 630,000 and 1.30 respectively. Dry-jet wet spinning technique was used for making PAN composite fiber. During the dry-jet wet spinning process, PAN composite fiber of 35-45 μm in diameter shows increased orientation. Initial elastic modulus of PAN composite fiber containing zeolite particles was 89% of PAN fiber at the same experimental condition. The cyclization and activated state of PAN fiber were confirmed by Fourier transform infrared(FT-IR) spectroscope and X-ray diffraction(XRD). After the activation process, characteristic peaks of PAN composite fiber could be observed due to the incorporation of zeolite particles from XRD. Partially activated PAN composite fiber containing zeolite particles is expected to use as an organic-inorganic composite absorbent.

Key words : PAN(polyacrylonitrile), Zeolite, Composite Fiber, Dry-Jet Wet Spinning Technique, Activation

1. 서 론

최근 산업의 발달로 인하여 절단적으로 발생하고 있는 환경문제는 자연의 자생 능력에 휘두르서 벗어나 심각한 사회문제로 대두되고 있다. 특히, 도시 환경에 포함되어 배출되는 오염 물질, 방사능 오염 물질, 그리고 도시 산업화의 폐수나 지하수에 섞여 있는 중금속 이온들은 적절적인 문제로 인에 있는 요소로써 각기 다른 실험적 조건을 요구하고 있으며, 이의 처리를 높고 심각하게 고심하고 있다. 이러한 오염 물질의 제거를 위한 기술 중 흡착제를 이용한 흡착리는 기술방법에 대한 연구가 이루어지고 있지만, 최근 활성탄소유(ACTivated Carbon Fiber, ACF)와 제올라이트를 이용한 연구가 진행되고 있다[1]. 활성탄소유는 페놀수지, polycrylonitrile (PAN), 세포로즈, 페이스 등으로부터 합성한 유키름을 다량화하고 환경성과도 부분활성화하여 만드는데 이산화탄소에 비교하여 보다 적합한 특성을 가지고 있다. 특히 매우 가사로인 섬유질(7-15μm)에 밝혀있는 미세기류(10Å)등이 표면에 노출되어 있어 기상 및 액상 홍차에 있어서 대단히 신속한 흡착속도를 나타내고 있다. 기존 형태
가 섬유이 때문에 적도, 부도도, 중이 등의 형태가 가능하고 취급이 용이한 반면에 가상 원형의 경우 낮은 화학적으로 안정성이 떨어진다. 물론 이외에도, 탈효소 소성이 우수한 섬유로는 독특하다고 보유하고 있어 가버면 서도 두께가 각개되고 내면성의 특성을 제조할 수도 있어 부패면, 방화용, 부유등 특수 용도의 형태로 적용되거나, NO, SO2 등 기상 오염 물질의 제거에 활용되고 있다.[2,3] 탄화수소나 탄화수소에 비하여 가격이 높다는 단점이 있지만, 비료등이 합성과 화학 속도가 우수하고 여러 차례의 재사용이 가능하기로도 인식받을 수 있다고 알려져 있다. 또한, 탄화수소소유는 많은 비료등이 공 순환을 통하여 공정용 재생재를 소재로 하여 이용할 수 있으며, 작고 균일한 재료는 최근에 각광을 받고 있는 인조 재료의 핵심적인 기술의 전반적 규모 필요로 매니모드로 매니로 채택되며 전자제품의 개발에도 깊이 관여하는 등 그 응용이 급속도로 널리진 것으로 전망된다. ACF의 전구로서 사용되는 PAN, 플로미스, 폴리, 폰 중에서 PAN은 응용에 대한 품질성을 갖추고, 다량을 능동할 수 있으며, 우수한 기계적 성능과 뿌어난 청상과열을 가진 재료로 제조할 수 있고 두 가지와의 상호작용이 있으며, 화학적 안전성을 가지고 있다고 알려져 있다.[4,5]

제조로는 알루미늄(AI), 실리콘(Si), 산소(O), 양이온(Mn') 그리고 물질(H2O)로 구성되어 있는 결정된 물질을 의미하는 것으로, 일반적인 신성소는 MnO2(2), SiO2(2), N2O5로, (MnO2(2) + (2) + SiO2(2) + (2) + N2O5로 단위체의 산소를 공유하면서 화학적으로 연결되어 3차원적인 구조를 갖추고 있어서 결정성 유산탄수(alkaline-silicate)로 묘사되곤 한다. 제조로는 매우 견고하고 미세한 구성을 지니고 있어 축면, 홍차계, 이온교환계, 그리고 발수성 등 광범위하게 이용되고 있다.[6] 이러한 제조로의 사용이 매우 급격한 성장조명이나 섬유(pellet) 형태로 국립화되기 쉽다. 하지만 화학적 측면에서의 활용을 위해서는 성장성의 제조로가 적합하지만 아직까지 보급될 바는 없다. 단지 항균성유의 사용을 위하여 제조로를 함유하는 polyamide 성유의 합성과 관련된 흥미가 보이고 있다.[7] 이에 제조로의 성질을 향상시키기 위하여 합성된 multilayer 용접 표면은 화학적 리터를 한 후 재료처리된 입자들을 성장시키는 방법이 보고되어 있지 만, 재료처리와 PAN의 특성을 활용하기 위한 재료처리를 활용한 PAN 복합체 성유에 관한 연구가 전무한 상태이다.

따라서 본 연구에서는 합성재료의 적용을 위하여 유기를 질여 Polyarylmethine(PAN)을 사용하고, 무기질질에 제조로 처리(4A, NaY)를 이용하여, 유기-무기 복합체 재료로 제조로를 함유한 부화성을 갖춘 PAN 복합체 실험 체를 시도하고 부화성화시킨 후 물성을 검토하였다.

2. 실험

2-1. PAN 복합체 성유의 합성

제조로를 함유한 PAN 성유의 합성방법은 Fig.1에 나타내었다. 유에는 dimethylsulfoxide(DMSO, Junsei Chemical)을 사용하였고, 토모는 중합계로(2-monomethyl ether hydroquinone, MEBQ)가 0.004% 들어 있는 acrylonitrile(AN, Yakuri Pure Chemical)을 사용하였다. 중합계로로 이트리산성(Acrylic acid, Sigma Aldrich)은 사용하였고, 기저액을 2.2% azobis isobutynitrile(AIBN, 동성현)을 사용하였다. 무기질질은 제조로 처리(4A, NaY 형, P2O5)를 사용하였다. DMSO는 4A 재료지에의 알함자 기준으로 300 °C에서 30min 남겼다. 제조로는 20%의 토모를 이용하여, 76 °C, 30mHg에서 1ml/ min적 중합온도를 유지하고, AN-50%의 분자기에서 상태를 유지하여 4시간 동안 사용하였다. 이다로제기와 AIBN은 무수분증에 수수방장 시 0 °C에서 재질을 2회 반복하여 사용하였다. 사용한 제조로처리는 재료지에의 알함자 기준으로 400 °C, 100ml/min의 유속으로 8시간 열처리 후 진공으로 4시간 동안 발생하여 사용하였다.

주동은 Fig.1의 Process A에서 보듯이 우수한 재료처리를 DMSO의 2.3% 를 유지하면서, 이타로제기와, AIBN, 그리고 1/2AN을 각각 30분간 100℃로, 20%의 분자기에 처리하였다. 이다로제기를 사용한 경우 Homo-PAN과의 구분을 하기 위하여 PAN(AN)으로 나타내었다. Process B에서는 제조로를 함유한 PAN 성유의 합성을 위한 공정으로 나머지 AN에 제조로처리를 넣고, 초과와 합계를 30분간 온장한 후, Process A의 반응물을 섭외 600℃의 금속 중돌을 삽입하여 유속을 유지하였다. 각각의 용액을 통과한 후, 1 °C/min로 60℃에서 승수시킨 후 진공분리기에서 100℃으로 고온하여 15분간 180분간 응용하중을 했었다. 이들 사용한 재료와 모노름의 조건은 100/30 wt/wt으로 고정하였고, 제조로처리의 사용은 (10 wt%)의 무수분 것을 투입하였다. 이들 재료처리를 사용한 PAN 성유의 경우에는 PAZIF, NaY 제조로처리를 사용한 경우에는 PYZIF로 명명되었다.

제조로처리는 염기화합식을 최소화하기 위하여 모노름 안에 30mA/sec의 세기로 초음파 파쇄를(Ultrasonics, Brason)을 이용하여 제조로의 입자크기를 최소화하였으며, 이때 AN이 승수되는 것을 막기 위해서 에탄올을 사용하였다. 반응 후 온수의 모노름과 식은장을 끓여치기 위해서 전반성대에서 3시간 도화하고, 삽고에서 48시간 지난 후에 방사 보호를 사용하였다. 이 방사 dope는 Fig.2에와 같.
이 전승열선법(dry-jet wet spinning technique)으로 방식하였다. 방속장치의 노즐은 0.2mm의 3개의 구멍을 가진 노즐을 사용하였으며, 제형온도는 70℃에서 가르는 단계로 70psi의 정소 압력으로 용접조여 수지적으로 방식하였다. 용접조의 온도 및 비용매의 종류는 섬유의 용성에 큰 영향을 미치며 용접속도가 너무 빨리면 섬유 생성이 불균질하게 된다. 따라서 용접속도 조절은 통한 급격한 섬유 생성을 위시해서 용매와 비용매의 조성을 DMSO와 H2O의 50/50(wt%)가 되도록 맞추었으며, 도착한 섬유는 10mm의 길이층을 통한 후 12-15℃의 옥션으로 방식하였다. 용강으로 들어간 섬유는 20m/min의 속도로 방식되어 로변에 갈라져, 종류로 48시간 이상 세척하였다. 증상실간에 따른 점도증가는 점도측정기(Viscometer, Hake)를 사용해 측정하였고, 제조된 섬유의 분자량 분포는 GPC(Gel permeation chromatography, Waters)를 사용해 측정하였다. 이동용 속에 N,N-Dimethyl formamide(DFMD, Tedia)를 사용하고, 용액은 Styragel HT6E-5E-3를 응용하여 80℃에서 측정하였다. 초음파 파쇄기로 인해 일자기가 조절된 제조라이트로 증점을 후 방속 dope의 제조라이트 일자기가 변화하는 공학적 분석(Dynamic light scattering, Brookhaven)에 의해 확인하였다.

2-2. 연산과 안정화 섬유의 제조

연산관리는 95℃의 병작수에서 5배 연산을 하는 연산수송과 185℃의 로서 2배의 연산수송을 행하였다. 연산 속도는 30m/min의 공급을 원칙으로 5°C/min의 속도를 사트수용량계(Diffential scanning calorimeter, Polymer Laboratory)로 고정시켰으며, 사트수용량계 결과는 토타로 공급중에서 210℃에서 30분간 증점 정점시킨 후 275℃에서 60분간 연산하기 안정화하였으며, 430℃에서 120분간 수중기를 포함한 진분분위기로 분할화 섬유를 제조하였다. 수중기에 의한 분활화성 섬유의 기종이 형성되는 과정은 아래와 같이 나타낼 수 있다.

\[
C + H_2O \rightarrow CH(O) \\
(C(H)O) \rightarrow H_2 + C(O) \\
C(O) \rightarrow CO
\]

연산 섬유의 절측길이도 분석으로 (FT-IR, Mattson) 분석과 X-ray diffraction, Rikaku 분석으로, 그리고 부착 및 폐응성성성성을 확인하였으며, 주사진화방법(Scanning electron microscopy, Jeol)으로 섬유의 단면과 표면의 형태학적 특성을 관찰하였다. 섬유의 기계적 특성을 확인하기 위해서 트스트론(Instruments LR10K, Lloyd)을 사용하여 20mm의 시료간이 20mm/min 속도로 2회 이상 측정한 값을 평균하여 나타내었다.

2-3. 제조라이트의 산점측정 실험

PAN전유내에 존재하는 제조라이트의 상호성성성을 측정하기 위하여 Summan 등의 방법을 이용하여 제조라이트에 존재하는 산점성을 측정하였다. [8] 소성시험, PAN과 제조라이트 혼합 PAN 섬유는 triethylamine(TEA, Sigma Aldrich)에 담가두었다가 증점하여 DSC를 측정하였다. 이때 습은온도를 10℃/min으로 800℃까지 습은시킨 후 Homo-PAN과 제조라이트를 혼합한 PAN의 파괴를 비교하여 산점성능에 존재하는 제조라이트에 활성부분을 측정하였다.

3. 결과 및 고찰

3-1. 제조라이트를 활용한 PAN의 형성

제조라이트를 활용한 PAN 형성은 위한 에비 실험으로 PAN과 제조라이트를 기계적으로 혼합하였다. 중합을 행한 PAN을 고속교반기(homogenizer)로 제조라이트를 혼합하는 경우로 모노마체 제조라이트를 분산시켜 PAN을 혼합하는 두 가지 방법으로 실험이라하여 PAN을 짟은 후 고속교반기로 3,000 rpm에서 혼합한 경우는 제조라이트 입자들이 분산되지 공히졌고, 입자크기가 줄어들지 않았으며, 고속교반기에 얽힌 PAN의 분해를 완벽히 하는 네트 장치가 필요하였다. 이에 미치하여 모노마체 분산시켜 PAN의 분해를 피하기 위한 네트 장치가 필요하였다. 이에 미치하여 모노마체 분산시켜 제조라이트 입자크기를 최소화하기 위시고 고속교반기의 초음파 파쇄기를 사용하였다. 고속교반기로 혼합한 후 혼합액을 용액화한 경우 지름이 110μm 정도로 방사한 섬유만 얻을 수 있었지만, 중합시 중점값이 현저하게 감소되었고, 섬유화한 후 제조라이트 입자크기가 2μm 정도로 분산진인이 연속적인 섬유화가 불가능하였다. 섬유화한 후에도 fibril 형성을 크게 하였다. 이에 본 실험이에서는 제조라이트 입자크기를 최소화하기 위시초음파 파쇄기를 사용하였다. 제조라이트 입자크기를 모노마체에 초음파 파쇄기로 분해하면서, 입자 크기 전과제에서도 그 크기 유도하였다. 용액중합으로 방조시킨 PAN(PAN+IT), Na-Y 제조라이트와 아미코르수남을 첨가한 PAN(PY2ZI)의 분모중량을 Fig. 3의 그래프로 나타내었다. Homo-PAN의 경우는 반응시간이 140분 이후 18,000cp 정도에서 220분에 53,000cp로 높은 중점도 증가를 보였으나 이후 시간의 증가도 광범위한 기울기를 보이고 있다. PAN+IT과 PY2ZI의 중점도는 140분에 8,000과 10,000cp, 2,000-10,000 cp 정도의 중과자 이를 두고 유사한 기울기를 보여서 중과하는 420분 이후 낮은
Fig. 4. Change of PAN yield with polymerization time.

제도 증가를 나타내고, PYIZF의 경우는 280분 이후부터 점도 증가가 나타나서 기존기의 값보다 S자형 점도의 변화를 나타내었다.

용하중량에 점도영향을 살펴보기 위해 Na-Y 제플라이트의 함량을 10wt%, 25wt%와 50wt%로 증가시켜 180시간 동안 증합한 경우 12,000cp, 6,000cp와 3,500cp로 낮은 점도를 나타내었으며, 제플라이트 함량이 증가함수록 제플라이트 염증현상이 증가되었다. Homo-PAN보다 PAN+IT의 점도가 낮은 이유는 이터코닉산의 함유로 인한 것으로, PYIZF의 점도 감소는 제플라이트 임차제로 인한 전하정변제 이터코닉산의 점착에 의한 분자량이 낮아졌기 때문이라고 생각된다.

반응시간에 따른 Homo-PAN, PAN+IT, PYIZF의 수용은 Fig. 4에 나타났다. 수용은 0.05mm 필름으로 협성시험 화에 에탄올을 용해하고 응고시키며, 70℃에서 건조하여 수용을 측정하였다. Homo-PAN은 140분까지 50wt%의 높은 수용 증가를 보이며, 이후 굴수 증가가 완전해졌고, PAN+IT의 수용은 300분까지 62wt%로 서서히 증가하다가 이후부터 수용증가가 일정하였다. PYIZF도 300분까지 55wt%의 지속적인 수용증가를 보였으며, 이후부터는 60wt%의 안정적인 수용을 나타내고 있어, 제플라이트를 첨가하지 않은 PAN+IT와 유사한 수용 증가를 보였다. Fig. 2의 결과로부터 제플라이트를 첨가한 PAN의 증합시간을 50분에서 180 분으로 증가시켜 PAN+IT와 유사한 점도의 dope를 얻었다.

반사 dope로 사용한 PAN+IT, PYIZF, 그리고 4A 제플라이트와 이터코닉산을 첨가한 PAN/PYIZF의 분자량 분포를 Table 1에 나타내었다. 제플라이트를 함유한 PYIZF, PAZIF은 15,000rpm에서 1시간 동안 원심분리하고, 0.5μm 필터를 사용하여, 2회 걸어 제플라이트를 첨가한 후에 GPC를 사용하여 분자량을 측정하였다. PAN+IT와 Na-Y 제플라이트를 첨가한 PAN의 경우 Table 1의 GPC 결과에서는 수평균 분자량(thesize number of average molecular weight)이 496,000과 485,000으로 크게 차이가 나지 않았다. PAN+IT와 4A 제플라이트를 첨가한 항목의 296,000으로 낮은 분자량을 가지고 있으며, 296,000과 1,970으로 분자량 분포가 넓어졌다. 평균 분자량도 제플라이트의 첨가로 낮아지는 것을 확인할 수 있었다.

Table 1. GPC analysis data of PAN+IT, PYIZF, and PAZIF

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mn</th>
<th>Mp</th>
<th>Mw</th>
<th>Mz</th>
<th>Polydispersity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN+IT</td>
<td>496,000</td>
<td>576,000</td>
<td>651,000</td>
<td>804,000</td>
<td>1.313</td>
</tr>
<tr>
<td>PYIZF</td>
<td>485,000</td>
<td>576,000</td>
<td>631,000</td>
<td>779,000</td>
<td>1.313</td>
</tr>
<tr>
<td>PAZIF</td>
<td>396,000</td>
<td>455,000</td>
<td>554,000</td>
<td>720,000</td>
<td>1.397</td>
</tr>
</tbody>
</table>

3-2. 제플라이트 함유 PAN성유의 특성화

성유화를 위한 PAN=44용은 11.67wt%였고, 폴리머 용액은 노출 수당 1.8g/min으로 20/min의 속도로 방사하였다. 부분매칭성유로 제조된 후 PYIZF의 단면과 표면의 주사전자현미경 사진은 Fig. 5에 나타내었다. 사진에서 보듯이 PAN의 표면은 제플라이트 함유와 부분매칭성유에 따른 분규적인 표면을 보여주고 있고, 35-40μm 두께의 옥수에 제플라이트 입자들이 부분 분산된 형태로 분산되어 있는 것을 확인하였다. 제플라이트가 응집되어 있는 크기는 0.1μm 정도로 보수판례와의 결과와도 일치하였다. 연산은 배향도의 증가와 더불어 기계적 품성을 증가시키는 단계로, 본 실험에서는 5배의 열수 연산과 2배의 건열연산을 행하였다. 안정화와 부분활성화에 따른 성유의 변화를 X선정밀 분석으로 Fig. 6에 나타내었다. PYIZF는 26강이 6인 제플라이트 피어크를 보였고, PAN의 피어크인 17와 29.5의 피어크를 확인하였다. 안정화성유를 제조했을 때는 24강이 26, 39, 43, 47, 그리고 48의 Na-Y 제플라이트 피어크를 세시계 확인할 수 있었고, 29.5피어크가 27강으로 이동된 것으로 보아 PAN성유 코팅이 잘 진행되었음을 알 수 있었다. 코팅된

Fig. 5. Scanning electron microphotograph of partially activated PAN composite fiber containing Na-Y zeolite particles.

(a) surface (b) fracture

Fig. 6. XRD patterns of (a) stretched PYIZF(185℃), (b) stabilized PYIZF(275℃), and (c) partially activated PYIZF(430℃).
Fig. 7. Reaction mechanism of P(AN+IT) during the thermal stabilization.

Fig. 8. FT-IR transmittance spectra of (a) PYZIF, (b) stabilized PY-ZIF, and (c) partially activated PYZIF.

Fig. 9. DSC thermogram for TEA desorption from the acid site of partially activated P(AN+IT) and PAZIF.

Table 2. Parameters obtained from DSC exotherms of Homo-PAN, P(AN+IT), and PAZIF fiber

<table>
<thead>
<tr>
<th>Sample</th>
<th>Homo-PAN</th>
<th>P(AN+IT)</th>
<th>PAZIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_i (°C)</td>
<td>244.7</td>
<td>196.9</td>
<td>221.4</td>
</tr>
<tr>
<td>T_f (°C)</td>
<td>402.5</td>
<td>374.8</td>
<td>362.6</td>
</tr>
<tr>
<td>ΔT (°C)</td>
<td>157.8</td>
<td>177.8</td>
<td>141.2</td>
</tr>
<tr>
<td>T_m (°C)</td>
<td>285.8</td>
<td>273.8</td>
<td>276.2</td>
</tr>
<tr>
<td>ΔH (J/g)</td>
<td>-470.0</td>
<td>-670.3</td>
<td>-672.3</td>
</tr>
</tbody>
</table>

배열된다. (d) 단계는 (e) 단계의 이터노산의 에스테리화(COOH)에 의한 고리화가 진행되어 안정화된 PAN 구조를 나타내는 것이다.

Table 2에서는 비열 반응시 사이클링 된 온도(Tf)의 변화도(Tp)를 반영 받음으로써 각자의 특성을 파악하였다. Homo-PAN의 경우보다 이터노산을 점차 충성화하는 형태의 PAN+IT를 형성했을 경우 Tp를 낮출 수 있었으며, 발열반응도 Homo-PAN의 경우보다 큰 값을 보이고 있다. PAN+IT와 PAZIF가 Homo-PAN의 발열반응과 큰 차이를 보이는 것은 Fig. 7의 (d) 단계로 예상되는 것으로 이터노산의 에스테리화가 고리화 반응의 개시점을 만들어 주어 PAN+IT와 PAZIF에서 쉽게 안정화되는 것을 보여주는 것으로 Gupte 등의 결과와 일치하는 것이다 [11]. 이는 제2유형의 천극에 관계없이 이터노산의 역할을 확인할 수 있었다. 시작사슬연결부 분석에 나타난 두 피막 중에 낮은 온도에 나타난 피막은 Fig. 7의 (a), (b), (c) 단계로 H2SO4, H2SO3가 짠혀지며 화합물화 반응이 생성되는 안정화 단계를 중점화 혔는 것이다. 이러한 반응은 Table 3에 colman 등의 의해 연구된 적절한 화합물반응으로도 비교하여 확인할 수 있었다 [12, 13]. 적절한 화합물반응으로 합성능에 중요한 회수를 나타낸 Fig. 4의 스펙트럼을 살펴보면, PAN+IT은 Homo-PAN의 피막이 3,400 cm⁻¹에서 NH, 2,930 cm⁻¹에서 CH2, 2,240 cm⁻¹에서 C=N, 1,610 cm⁻¹에서 CH2, 1,510 cm⁻¹에서 NH의 특성 피막과 보였고, 이터노산의 3,500 cm⁻¹에서 OH, 1,740 cm⁻¹에서 CO 피막과 특징적이며, Na2O제로마이드가 들어있다. PAN 심유는 1,640 cm⁻¹에서 AIO-, 1,100 cm⁻¹에서 SiO-피막을 나타내며, Fig. 7의 (a)단계를 보여준다. 안정화 상태를 거쳐서 2,870 cm⁻¹의 C-H, 피막이 2,240 cm⁻¹의 C=N 피막과 비교하여 생화학적 성장을 보일 수 있다. 1,600 cm⁻¹ 주변에서 C=N과 C=O 피막이 크게 성장하였고, 이에 따른 2,240 cm⁻¹의 C=N 피막이 가시화되면서 고리화된 것을 확인하였다 [14, 15]. 이는 Fig. 7에 (e)단계와 일치하는 경로이다. 부분활성화는 안정화성과 고리화된 부분의 일부 고리화된 부분이 함석으로써 안정화 상태의 3,500 cm⁻¹의 축만 감소증가의 피막은 2,900 cm⁻¹에서 3,500 cm⁻¹으로 넘어졌고, 2,000 cm⁻¹의 피막들이 많은 중가를 보이고 있다. 또한, 부분활성화 온도 증가에 따른 1,200 cm⁻¹에서 1,500 cm⁻¹의 피막들이 많은 증가를 보이고 있다 [16].

인스턴트를 이용하여 부분활성화결제의 제로마이드와 이터노산을 함유한 PAN 심유의 기계적 특성을 Table 4에 나타내었다 [17]. 제로마이드를 함유한 PAN 심유는 기계적 특성이 PAN+IT와 비교하여 낮은 기계적 특성을 나타내지만 94%의 탄성계수, 83%의 신 용, 89%의 안정장도를 보여주고 있다. 안정화된 심유의 경우는 안정 화성화 전의 특성과 비교하여 50% 감소된 안정장도를 나타내었으며, 제로마이드를 함유한 경우는 81-88%의 안정장도의 감소를 보이고 있다. 이 결과에서 셀로말의 입자 크기가 조절하지 않고 심유화하는 경우는 제로마이드의 접착도가 낮아지기로 심유의 두께가 두 끌줘지고 제로마이드와 심유의 유연성(#flexibility), 탄성장도(stress), 안정 장도(mobilization)에서는 낮은 특성을 보이고 있다. 다만 심유의 두 계가 두어되지 않도록 신속한 elongation을 보이고 있다.

Summan 방법 [8]을 이용하여 부분활성화결제의 PAN 심유에 존재하는 제로마이드의 활성 이온을 알아보기 위하여 제로마이드의 산화를 측정한 실험결과 Fig. 10에 나타내었다. Fig. 10에서 보는 바와 같이 PAN 심유는 70℃에서 TEA 탈착에 따른 변연특성을 보여주기도 한다. PAZIF의 경우에는 187℃와 317℃를 중심으로 낮은 TEA 탈착 피막을 보여 주고 있다. PAZIF의 경우는 312℃와 352℃에서 제로마이드의 특성화 심화 피막이 강하게 나타날 수 있다. 이는 탄성화된 부분 활성화된 PAN 심유 복합체에서 PAZIF의 제로마이드의 종류로 따름 선택적 화학적을 이용할 수 있음을 나타내는 결과이다. 이는 앞서 제로마이드를 함유한 PAN 복합체가 심유상으로 사용될 수 있을을 제시하는 결과로 사료되었다.

Table 3. Infrared bands attributable to PAN

<table>
<thead>
<tr>
<th>IR band(cm⁻¹)</th>
<th>Tentative assignment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3350-3390</td>
<td>ν(NH)</td>
<td>M. M. Coleman et al.[4]</td>
</tr>
<tr>
<td>3230-3230</td>
<td>OH or NH</td>
<td>J. E. Bailey et al.[12]</td>
</tr>
<tr>
<td>2940</td>
<td>CH₂, ν(CH)</td>
<td>A. J. Clarke et al.[19], C. Zhang et al.[9], A. K. Gupta et al.[26]</td>
</tr>
<tr>
<td>2240</td>
<td>ν(C=N)</td>
<td>M. M. Coleman et al.[4], J. E. Bailey et al.[12], A. J. Clarke et al.[19], C. Zhang et al.[9], M. Minamagawa et al.[4], P. Bajaraj[18]</td>
</tr>
<tr>
<td>1730</td>
<td>C=O</td>
<td>A. J. Clarke et al.[19], P. Bajaraj[18]</td>
</tr>
<tr>
<td>1610</td>
<td>ν(C=O)+ν(C=C) =NH</td>
<td>M. M. Coleman et al.[4], C. Zhang et al.[9]</td>
</tr>
<tr>
<td>1610-1590</td>
<td>mixed C-CN, C=O</td>
<td>C. Zhang et al.[9]</td>
</tr>
<tr>
<td>1575</td>
<td>ν(C=O)+ν(NH)</td>
<td>M. M. Coleman et al.[4]</td>
</tr>
<tr>
<td>1485</td>
<td>CH</td>
<td>C. Zhang et al.[9]</td>
</tr>
<tr>
<td>1458</td>
<td>δ(CH₂)</td>
<td>M. M. Coleman et al.[4], A. K. Gupta et al.[]</td>
</tr>
<tr>
<td>1270-1200</td>
<td>CH</td>
<td>P. Bajaraj[18]</td>
</tr>
<tr>
<td>1250</td>
<td>ν(CH₃), ν(CH₂)</td>
<td>M. M. Coleman et al.[4]</td>
</tr>
<tr>
<td>1170</td>
<td>ν(CH₃)</td>
<td>A. J. Clarke et al.[19]</td>
</tr>
<tr>
<td>1150</td>
<td>ν(C-CN)+ν(NH)</td>
<td>M. M. Coleman et al.[4]</td>
</tr>
<tr>
<td>1250-1150</td>
<td>C=O or C=O</td>
<td>J. E. Bailey et al.[12]</td>
</tr>
<tr>
<td>1075</td>
<td>CH</td>
<td>P. Bajaraj[18]</td>
</tr>
<tr>
<td>840-790</td>
<td>C=O</td>
<td>A. J. Clarke et al.[19]</td>
</tr>
<tr>
<td>800</td>
<td>C=OH</td>
<td>J. E. Bailey et al.[12]</td>
</tr>
<tr>
<td>530</td>
<td>C=O</td>
<td>P. Bajaraj[18]</td>
</tr>
</tbody>
</table>

Table 4. Mechanical property of fibers with stretching and stabilisation

<table>
<thead>
<tr>
<th></th>
<th>Stress (Kg/mm²)</th>
<th>Strain (%)</th>
<th>Initial elastic modulus (Kg/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN+IT</td>
<td>5883</td>
<td>9.16</td>
<td>92204</td>
</tr>
<tr>
<td>PAZIF</td>
<td>5510</td>
<td>7.56</td>
<td>81609</td>
</tr>
<tr>
<td>PYZIF</td>
<td>3563</td>
<td>6.84</td>
<td>55954</td>
</tr>
<tr>
<td>PYZIF*</td>
<td>396</td>
<td>6.99</td>
<td>11369</td>
</tr>
<tr>
<td>Stabilized PAN+IT</td>
<td>1511</td>
<td>2.20</td>
<td>41451</td>
</tr>
<tr>
<td>Stabilized PAZIF</td>
<td>1187</td>
<td>2.02</td>
<td>10025</td>
</tr>
<tr>
<td>Stabilized PYZIF</td>
<td>1070</td>
<td>2.02</td>
<td>10741</td>
</tr>
</tbody>
</table>

*PYZIF: Fiber synthesized from uncontrollable particle size of zeolite.
제올라이트를 함유한 실험조

제올라이트는 0.1μm 크기로 불규칙한 분산 형태로 분산되어 있었고, 부분화성을 둔 TEA 출탈작을 통해서 PAN, 4A와 Na-Y 제올라이트의 결정에 의한 흡착성이 이용 가능성을 확인할 수 있었다.

감 사

본 논문은 한국과학기술연구원(KIST) 심유분자 연구실의 연구비 지원에 의해 연구되었으며, 편집부 연구원님, 이성주 박사님, 장문현 부사장님(예정소재)이 도움을 주셨습니다. 이에 감사드립니다.

참고문헌