수두 바이러스의 인체 폐세포내 증식모델

류재남, 박정국, 김현수*, 김수욱*, 정용주*, 김익환**

동국대학교 화학공학과
*제일제당(주)
**고려대학교 생명공학원
(1998년 2월 4일 발수, 1998년 6월 9일 채택)

Varicella-Zoster Virus Propagation Model in Human Lung Fibroblast Cells

Jae-Nam Ryu, Jung-Keug Park†, Hyun-Su Kim*, Soo-Ok Kim*, Yong-Ju Chung*, and Ik-Hwan Kim**

Dept. of Chem. Eng., Dongguk University
*Cheil Food & Chemicals Inc.
**Graduate School of Biotechnology, Korea University
(Received 4 February 1998; accepted 9 June 1998)

요 약

수두 바이러스는 병원성 바이러스로 알려져 있다. 수두 바이러스에 감염된 세포는 직접적으로 인접한 세포를 감염시키고, 세포와 밀접하게 결합(associated)되어 있다. 수두 바이러스는 환경미생물이 높아서 실험실 환경에 가장 일반적인 실험결과가 달라질 수도 있다. 따라서 수두 바이러스의 정확한 수생을 예측하는 것이 어려우며 이러한 문제를 해결하기 위해 수두 바이러스 중에서 대표적인 증식모델이 필요하다. 수두 바이러스의 증식에 영향을 미치는 둘 이상 중요한 변수는 형성 세포에 감염 세포를 접종하는 감염비(multiplicity of infection, MOI)와 감염 후 배양 시간이다. 본 연구에서는 수두 바이러스의 cell-to-cell 감염 특성을 이용하여 finite element method를 이용한 증식모델을 개발하였다. 감염성도가 이중세포를 감염시킴으로서 길이는 실험에 의해 8시간으로 설정하였고, 감염성도는 감염된 후 48시간 후에 감염능을 얻는 것으로 추정하였다. 본 연구에서 설정된 모델의 simulation 결과 감염비(MOI)가 증가함수로 감염속도는 빨라지며, monolayer culture 경우 수두 바이러스의 최대 수생은 감염비 1:10에서 얻을 수 있음을 확인할 수 있었다. 본 연구의 2차원적인 증식모델은 추후 실제 시스템에 더 가까운 3차원적 바이러스 증식모델 설정에도 응용될 수 있을 것이다.

Abstract — Varicella-zoster virus (VZV) is known to be an unstable virus. Infectious cells infect directly adjacent cells and VZV has the strongly cell-associated nature. Kinetics analysis of VZV proliferation shows different experimental values due to the environmental sensitivity of VZV. So the prediction of exact yield of VZV is difficult. In order to solve this problem, a theoretical model is required to estimate more precise yield of VZV. The yield of VZV is related to multiplicity of infection (MOI) and time of culture in the proliferation of VZV. A model was developed by using the finite element method considering the cell-to-cell infection characteristic of VZV. The spreading time of plaque forming cells to the neighboring cells was determined as 8 hours by several experiments. It was assumed that plaque formed cells lost infectivity within 48 hours after it was infected. From the simulation of two-dimensional model used in this work, it was confirmed that the maximum yield of VZV could be obtained at the MOI of 1:10, which corresponded with experimental results. The VZV propagation model can be extended to the future 3-dimensional model which is closer to real VZV propagation.

Key words: Varicella-Zoster Virus, Propagation Model

1. 서 론

수두는 주로 어린이들에게 유래한 수포성 전염병이며 전염성이 매우 높은 질병으로 2세대의 소아에게 많이 걸리는데 상대성을 패용

References

번성, 조직의 축적을 없이며 수포를 형성하고 감염 초기에는 세포의 핵내로 함포제를 형성한다. 수두의 증상으로는 폐에 발진과 수포가 일어난 후 며칠간 약간 만에 저해되고 사망률은 1% 이하이나 신생아의 경우에는 20% 정도의 사망률을 보이며 변연성이 약간 어린 이나 변연직에 밀어진 상태의 사람, 약성중상으로 변연직에 요법으 로 치료를 받고 있는 사람의 경우 수두에 걸리면 치명적일 수 있다고

*E-mail: jkpark@caakra.dongguk.ac.kr
발리시 있다[1]. 수두의 치료방법으로는 발전 후 3일 이내에 acyclovir를 정주하면 대상포진의 진행을 막을 수 있고 항산화제 효과가 있음 것으로 알려져 있다[2]. 수두 바이러스는 사람 이외의 감수성이 있다고 알려진 동물은 아직 없으며, 병원설을 나타내는 동물도 없으므로 알려져 있다. 따라서 다른 바이러스처럼 심장독감에 의한 바이러스의 증상과 그 특성을 알기 어렵고 병원학 관리가 매우 어렵다고 알려져 있다[3].

수두 바이러스는 매우 불안정한 바이러스로 알려져 있으며, 수두 바이러스에 감염된 세포는 직접적으로 감염된 세포에 감염하여 세포내에서 세포막이 나오지 않는 특성을 가지고 있다. 그러나 정상 세포가 본질적으로 감염된 세포에 접촉이 있거나 또는 조직이 세포질과 이동하는 부분이 특화된것으로 감염이 시작되거나 멍이거나 된다. 심유세포 배양에서 초기 감염 세포는 변형되지 않지만, 성장단계와는 분명하게 다르게 되는 변형을 보으며 나타난다. 전형적으로 바이러스 감염은 장상세포의 죽음과, 특히 전형적으로 진행되며[9,10]. 세포에서 세포 내부 수두 바이러스의 감염 단계를 바이러스 항성 밝침작용으로 조사한 결과가 여러 문헌에 나와 있다[11-13].

충분한 수두 바이러스 수용을 얻기 위해 두 가지 중요한 변수는 정상 세포에 전염 세포를 전증하는 감염병(MOI)감염 후 배양 시간이다. 수두 바이러스의 수용은 수두 바이러스에 감염된 세포 배양에서 감염이 배양 시간에 영향을 미치는다는 사실이 이미 알려졌고[14]. 이와 아울러 수두 바이러스는 환경 변화가 높기 때문에 전염하려면 고온도, 높은 배양 시간에 감염화하는 것이 어렵다. 이 때문에 바이러스 수용에 관한 이론적 모델의 필요성이 요구되었다. 이론적 모델은 바이러스 수용에 영향을 미치는 감염병과 배양시간에 따른 수용의 변화에 대하여 그리고 다양한 실험적 변수에 따른 수용의 변화를 쉽게 예측할 수 있는 것이었다. 적절한 배양법을 통해 부적절 세포의 성장모양에서의 연구는 여러 문헌[15-20]에서 찾아 볼 수 있지만, 최근까지도 이론적 수두 바이러스 중립체의 연구는 전부 실험이다. 따라서 본 논문에서는 이론적 모델을 개발하여 감염병과 배양시간에 따른 수두 바이러스의 수용 변화를 산출해 내었다.

2. 실험재료 및 방법

2-1. 세포주 및 바이러스주
수두 바이러스 중식에 사용한 수주세포는 바이러스 배식개발 및 생산의 일환 쓰이고 있는 Human Lung Fibroblast(HLF) 세포로서 ATCC(American Type culture collection, 12301 parklawn Drive, Rockville, Maryland 20852, U.S.A.)로부터 분배 받부 받아 사용하였다.

수두 바이러스주는 압착된 Oka 바이러스주를 사용하였으며 일본대학 생물학 연구소(3-1 Yamada-Oka, Suita, Osaka, Japan)에서 판매하는 생수두백 Varicella Biken(1,400 PFU/0.7ml)을 완전하게

2-2. 배지 및 형질
배지는 powder 상태인 DMEM(Dulbecco's Modified Eagle Medium, 4.5/5 g glucose; Gibico Co., 8451 Helgerman court, Gaithersburg, MD 20877, U.S.A)을 사용하였고, 배지에 Sodium bicarbonate(Sigma Co.) 2.0 g, HEPES(Sigma Co.) 2.38 g, Pyruvic acid(Sigma Co.) 0.11 g, Antibiotics(neomycin sulfat, Gibico Co.) 0.05 g를 가하여 배지 1L를 만든 후 Autoclave로 완전히 범위 데워(121°C, 25분), 여과기를 (0.22 μm pore size membrane)을 사용하여 clean bench에서 진공 여과하여 사용하였다. 형질은 fetal bovine serum(FBS, Gibico Co.)를 사용하였는데 56°C에서 30분 처리하여 성장영역물을 inactivation시킨 후 사용하였다.

2-3. 바이러스 점성(Plaque Assay)
제 점성이 있는 바이러스를 점성할 수 있는 방법으로 plaque assay 방법을 이용하여 감염된 세포(PFC, plaque forming cells)을 점성하였다. 이에 plaque assay를 수행하여 HLF 세포를 사용하였으며 다음과 같은 assay 방법을 사용하였다.

Plaque assay 2-3일 전에 12-well plate에 세포용액(1x10⁶ cells/ml)을 올리 2ml씩 넣어 배양하였다(10% FBS 세포). 세포배양 2-3일 후에 접촉에 있는 배지를 벗겼고 점성되어 해 바이러스 감염 세포를 적당하게 놓여하여 50μl에 분배하고 각 10-100μl를 혼합하여 1시간 동안 원인의 배양도로 하여 하루 동안 배양한 후 배지 1μl를 브러시로 FBS 2.5%를 합성하여 배지 1μl를 넣어 수었다. Incubator(37°C)에서 4-6일간 격리하여 plaque 형성여부를 관찰하고 판정자(×40)를 이용하여 plaque counting하여 titer를 결정하였다.

2-4. 세포크기 및 Plaque 크기 측정
T-flask(25cm²)에 5x10⁶ cells/ml의 농도로 세포를 접종하고 37°C incubator에서 4시간 동안 배양한 후 cell counting을 하여 세포크기를 다음과 같은 방법으로 측정하였다. T-flask에서 4시간 동안 배양한 세포의 수(0). T-flask의 표면적(2.5x10⁶ μm²)을 나누면 세포 한 개당의 면적(A)이 구할 수 있다. 세포의 크기의 평균값(B)이 1:7 인 실제 세포의 형태에 가까운 지사각형(면적형태의 비율을 이용하여)로 가정하고 세포의 크기(W)를 다음과 같이 구하였다.

\[
A = \frac{2.5 \times 10^6}{n} \quad \text{(μm²/cell)} \\
W = \sqrt[n]{A} \quad \text{(μm)}
\]

Plaque 크기의 측정은 six-well plate에 3x10⁶ cells/well의 농도로 세포를 접종하고 3일간 배양한 후 바이러스로 감염된 세포와 정상 세포 1:5로 감염시켰다. 그리고 plaque가 형성되기 시작하는 날부터 배양된 전에 plaque 크기를 측정하였다. 배양에 사용한 배양기는 장상 세포에서 10% FBS 혼합 DMEM을, 바이러스로 감염된 세포에서는 2% FBS 혼합 DMEM을 웨드각 5ml씩 넣어주었고, 3일에 한번씩 배지를 갱신하였다.

3. 바이러스 중식 반응 측정

3-1. 수두 바이러스의 감염도(step-time) 측정

HWAHAK KONGHAK Vol. 36, No. 4, August, 1998
Plaque의 단축의 크기(P)는 six-well plate에 3×10^5 cells/well의 농도로 세포를 접종하고 세포가 완전하게(confluent) 자라면 바이러스에 감염된 세포로 감염시켰다. 그리고 plaque가 형성되기 시작하는 날부터 매일 plaque의 단축의 크기를 측정하여 plaque의 단축의 크기(P) 변화를 구하였다. 그리고 세포의 단축의 크기(W로 plaque의 단축의 크기를 P로 나타내어 하여 V에 몇 개(M)의 세포가 감염되는 지 계산했다. 바이러스에 감염된 하나의 세포가 이웃한 접종세포를 감염시키는데 걸리는 시간(step-time)은 식 (4)와 같이 구하였다.

\[
M = \frac{P}{V} \text{ (cell/day)} \quad (3)
\]

\[
\text{Step-time} = \frac{24}{M} \text{ (hr/cell)} \quad (4)
\]

3-2. 이론적 모델에 사용되어진 변수 및 가정
모델에 사용되었던 변수로써는 감염된 세포의 배양시간(end-time)은 12, 24, 36, 48, 64, 89시간으로 하였고, 감염된 세포로 계산 정상 세포의 수(multiplicity of infection, MOI)를 1:1, 1:10, 1:20으로 하였다. 그리고 수두 바이러스 증식에 대한 이론적 모델에 사용한 세포 속도는 75×75로 계산하여 정상 세포의 수를 5,625개로 하였고, 이론적 모델의 시뮬레이션에 사용한 가정은 다음과 같다.

(1) 세포의 형태는 단축(W)과 접촉(L)의 비가 1:7일 직각형이다.
(2) 수두 바이러스의 속도는 감염된 세포에 인접한 접종세포 즉, 감염된 세포는 감염된 세포의 E, W, S, N의 4방향으로 진행된다.
(3) 감염된 세포는 감염된 지 48시간에 감염을 잃어버린(death-time).
(4) 초기 감염세포의 50%만이 감염능을 가진다.

3-3. 시뮬레이션의 실행
감염가능(MOI)과 배양시간(end-time)을 변수로 하여 다음과 같이 실행하였다.

(1) 정상 세포에 바이러스 감염 세포가 random하게 감염되면 computational cell의 색을 lightgray에서 black으로 전환시켰다.
(2) 시간이 step-time에서 도달하면 step-time에 따라 black으로 전환된 세포의 E, W, S, N방향으로 바이러스 감염이 시작되며, lightgray로 black으로 전환된다.
(3) Death-time이 되면 시뮬레이션의 실행을 정지시키고, 감염능을 가진 감염세포(색이 black인 세포) 숫자를 계산하였다.

4. 결과 및 고찰

4-1. 세포 및 Plaque의 크기 측정
DMEM 벤치(혈청 10% 혼합액)에서 세포를 4일간 배양하고 세포의 크기를 측정한 결과세포 수는 1.28×10^5±2.01×10^3개/25cm²였고, 각각의 세포의 크기는 16.70±2.66μm으로 측정되었다. 그리고 벤치를 2% 혼합한 바닥에서 바이러스에 감염된 세포로 배양하고 plaque의 단축의 크기의 변화를 현미경 상에서 측정한 결과를 Fig. 1, 2에 나타내었다. Fig. 2는 six-well plate에서 감염세포의 증식을 보여주는 것으로 배양시간이 증가함에 따라 plaque의 크기도 점점 증가함을 보였으며, Fig. 3은 배양시간에 따른 plaque의 평균 단축 길이 변화를 보이고 있다. Plaque의 단축 길이는 101.2±31.4μm/day로 증가

Fig. 1. Small computational grid showing the three-states (black, white, lightgray) computational cells.
(lightgray: uninfected cells, black: infected cells, white: infectivity- lost cell, ↑, ↓, →, ↓: progressive direction of infection)

Fig. 2. Propagation of plaque forming cells at 5 days (A) and 7 days (B) after infection.
4.2. 바이러스 감염속도 측정

바이러스 증식에 대한 이론적 모델에서 나타낼 방법으로 바이러스에 감염된 세포가 이웃한 장상세포를 감염시키는데 걸리는 시간(step-time)을 구하였다. Plaque의 평균 단축 길이 변화는 101.2±31.4 μm/day인 plaque의 크기 변화 결과는 bidirectional에 대한 결과이며, 따라서 unidirectional에 대한 plaque의 평균 단축 길이 변화는 50.6 μm/day가 된다. 세포의 크기 16.70 μm/cell로 plaque의 크기 변화 50.6 μm/day를 나누어 주변 3.05 cells/day의 값이 구해진다. 그러므로 감염된 하나의 세포가 이웃한 하나의 장상세포를 감염시키는데 걸리는 시간은 약 8시간으로 계산되었다.

4.3. Monolayer Culture에서 감염체(MOI)에 따른 바이러스의 생산

일반적으로 바이러스의 대량생산에서는 술주세포와 바이러스의 접촉비에 따라 바이러스 증식 경향이 크게 달라지기 때문에 바이러스 감염비(multiplicity of infection, MOI)가 중요한 변수로 알려져 있다. 바이러스 감염비가 높은 경우 단시간에 많은 바이러스가 술주세포에 침입하므로 바이러스 증식으로 인한 술주세포의 독성으로 세포죽도가 급격히 증가하여 술주세포내의 바이러스 증식보다는 술주세포 자체의 유속이 어려워지므로 적정한 바이러스 감염비가 요구된다.

수두 바이러스 경우는 바이러스의 감염이 cell-to-cell로 이루어져 있기 때문에 바이러스 감염세포의 접촉비가 scale-up시 큰 변수로 작용한다. 수두 바이러스를 대량으로 배양할 때 술주세포가 완전하게 자란 다음 바이러스 감염세포를 감염시키므로 바이러스 감염세포 요구량이 매우 적어지므로 대량생산에서의 scale-up에 유리하게 된다. 본 실험에서는 세포가 완전하게 자란 25 cm² T-flask에 바이러스 감염세포와 술주세포의 수가 1:5, 1:10, 1:20에 되게 바이러스를 감염시킨 후 12, 24, 36, 48, 64, 89시간의 생물을 plaque assay하여 감염비 영향을 관찰하였다.

그 결과 Fig. 4에서 보는 바와 같이 감염비가 적을수록 최고 PFC를 보이는 시간이 길어질 것을 알 수 있었고, MOI를 1:10로 감염시켰을 때 다른 감염비를 사용한 것보다 높은 PFC를 배양후 48시간에 얻을 수 있었다.

4.4. 바이러스 생산에 대한 실험결과와 이론적 모델 결과의 비교

시뮬레이션은 위에서 서술한 방법으로 실행하였고, 변수 중에서 step-time은 바이러스 감염 속도 측정에서 8시간으로 구해져 이 값을 사용하였다. 그리고 end-time은 감염세포를 배양하는 기간으로 12, 24, 36, 48, 64, 89시간을 사용하였으며, death-time은 48시간을 시뮬레이션에 적용하였다. 또한 시뮬레이션은 바이러스 감염체와 술주세포의 수를 1:5, 1:10, 1:20으로 하여 각각의 감염비에 따른 이론적인 바이러스 생산 수을 구하였다. 시간과 감염비에 따른 바이러스 생산은 감염비가 증가함수록 감염속도는 빨라지고, 최대 수두 바이러스의 수율은 감염비 1:10일 때 감염 48시간 후 얻을 수 있음을 알 수 있었는데, Fig. 5-7은 바이러스 생산에 대한 시뮬레이션과 실험결과를 비교한 것을 나타낸다. 시뮬레이션에서 감염비와 시간에 따른 바이러스 증식의 경향과 최대 PFC에 도달하는 시간은 실험 결과와 유사하지만, 바이러스 생산 수율은 크게 차이를 보이고 있는 데 이러한 결과는 실험조건이 강화되더라도 실험적으로 언어진 바이러스 생산 수율은 변화가 생길 수 있으며, 또한 실험에서 사용한 조건과 같은 여러 양에서 시뮬레이션에 적용해야 하는 여러분에 문할 수도 있다. 그리고 감염비 1:10과 1:20의 실험결과와 시뮬레이션 결과는 크게 차이를 보이고 있다.

HWAHAK KONGHAK Vol. 36, No. 4, August, 1998
모델의 결과는 다음과 같다.

5. 결 론

Oka virus 주를 사용한 인체 폐세포(HLF)로부터 수두 바이러스 (Varicella-zoster virus, VZV) 증식 모델 개발연구를 통하여 다음과 같은 결론을 얻었다. T-flask 실험을 통하여 수두 바이러스에 감염된 세포가 인접한 세포로 전파되는 과정은 평균 8시간 이었으며, 수두 바이러스에 감염된 세포는 48시간 내에 수두 바이러스의 감염을 상당한 수준의 감염을 유발하는ことが 가능하다. 감염세포(MOI)의 배양 시간에 따라 수두 바이러스의 증식이 차지할 수 있었다. 실제 실험 결과와 이론적 모델에서도 감염세포(MOI)가 증가할수록 감염속도는 빨라지며, monoculture 실험의 경우 최대 수두 바이러스의 수용은 감염전 1:10일 때 얻을 수 있음을 확인할 수 있었다. 이론적 모델은 바이러스 증식의 최적화에 유용하게 적용될 수 있을 것이다. 이러한 이론적 실험은 앞으로 3차원 세포배양에도 적용될 수 있을 것으로 생각되며, 실제 세포의 기하학적인 형태를 고려하고, 또한 바이러스에 감염된 세포의 time-distribution을 적용한 모델의 개발이 필요하다.

사용기호

\n\begin{align*}
\text{n} & : \text{cell number in 25 cm}^2-\text{flask} \\
\text{L} & : \text{length of a cell [\mu m]} \\
\text{W} & : \text{width of a cell [\mu m]} \\
\text{A} & : \text{area of a cell [\mu m}^2\text{/cell]} \\
\text{P} & : \text{change of plaque size [\mu m/day]} \\
\text{M} & : \text{infected cell number in a day [cell/day]} \\
\text{Step-time} & : \text{spreading time of plaque forming cell to neighboring cell [hr/cell]}
\end{align*}

참고문헌