Mg(OEt)$_2$/THF/SiCl$_4$/TiCl$_4$ 촉매에 의한 에틸렌의 기상 중합 및 공중합

정민철, 김일*, 김재하**, 최홍기, 우성일†

한국과학기술원 화학공학과
*울산대학교 화학공학과
**대한화학회(주)
(1994년 1월 12일 접수, 1994년 9월 30일 채택)

Gas Phase Homo- and Co-polymerization of Ethylene over Mg(OEt)$_2$/THF/SiCl$_4$/TiCl$_4$ Catalysts

Min Chul Chung, Il Kim*, Jae Ha Kim**, Hong Ki Choi and Seong Ihl Woo†

Dept. of Chem. Eng., Korea Advanced Institute of Science and Technology, Kusong-Dong, Yusong-Ku, Taejon, Korea
**Department of Chemical Engineering, University of Ulsan, P.O. Box 18, Kyungnam, Korea
Korea Petrochemical Ind. Co., Department of R&D, Bukok-Dong, Nam-Ku, Kyungnam, Korea
(Received 12 January 1994; accepted 30 September 1994)

요 약

기상 및 슬러리상에서 Mg(OEt)$_2$/THF/SiCl$_4$/TiCl$_4$ 촉매를 사용하여 반응온도는 20-70℃, 반응압력은 2-10 psig에서 에틸렌 중합 및 공중합을 실시하였다. 기상 중합에서 촉매의 최적의 환경은 Al/Ti 폴비로 377에서 나타났고, AlEt$_3$의 농도에 따른 실험결과 중합반응속도는 Langmuir-Hinshelwood 모델을 이용하여 설명할 수 있었다. 기상 및 슬러리상에서 반응온도가 60℃ 일 경우 가장 좋은 활성을 보였으며, 결과가 활성화에너지의 기상 중합(4.7 kcal/mol)보다는 슬러리상 중합(13 kcal/mol)에서 더 높았다. 고분자의 분자량은 폴비에 의하여 측정하였으며, 에틸렌 반응압력이 증가할수록, 반응온도가 낮을수록, AlEt$_3$ 농도와 수소 농도가 감소할수록 고분자의 분자량은 증가하였다. 또한 에틸렌과 프로필렌, 에틸렌과 부렌-1과 공중합반응을 실시하였다. 공중합물의 폴비가 증가할수록 고유등도와 용용지수는 감소하였고, 공단량체의 농도가 20 mol%에서 최대 활성을 나타냈다.

Abstract—Homo- and co-polymerization of ethylene were carried out in both gas and slurry phases over Mg(OEt)$_2$/THF/SiCl$_4$/TiCl$_4$-AlEt$_3$ catalysts in the range of temperature 20-70℃ and pressure 2-10 psig. In gas phase polymerization, maximum activity was measured at the Al/Ti mole ratio of 377, and reaction rate dependence on AlEt$_3$ concentration could be explained with the Langmuir-Hinshelwood adsorption model. Even though maximum activities were obtained at the same temperature, 60℃ in both gas and slurry phases, overall activation energy was higher for the slurry phase(13 kcal/mol) than for the gas phase(4.7 kcal/mol) polymerization. The molecular weight behavior has been examined by measuring intrinsic viscosity. The molecular weight was increased as the ethylene pressure increased, and as the temperature and the concentration of AlEt$_3$ and hydrogen decreased. Using two different comonomers(propylene and butene-1), the copolymerization of ethylene was carried out. The intrinsic viscosity and the melt index were decreased as comonomer concentration increased, and the maximum activity was observed when the concentration of comonomer is about 20 mol%.
1. 서 론

MgCl₂에 담겨진 지급이나 단계의 발명은 산업적 및 학문적으로 상당히 중요한 것이다. 이 촉매의 발명으로 폴리에틸렌의 생산성을 향상시킴으로써 고분자 내 에 전환하는 촉매전가가 ppm 정도로 낮아 있기 때문에 이를 제거하는 공정이 필요해졌게 되었다. 또한 고분자의 임자기 및 분포, 폐상밀도, 용용가수 등에 몰물을 보다

이와 같은 임계 때문에 1963년 이후에는 MgO, Mg(OR)₂, Mg(OH)₂, Mg(OH)-Cl, Mg(OR)₂Cl, MgCl₂ 등의 마그네슘합물을 담채로 하여 제조한 촉매가 산업적으로 대단히 중요한 역할을 해 왔고[1], 학문적으로도 많은 연구가 되어 왔다. 이 쓰이는[2,3]는 알코올이나 에스테르를 사용함으로써 담
채, TiCl₄, 알루미늄알킬 등과 반응하거나 침투를 형성하여 담채의 표면적을 증진시켜 촉매의 성능을 증진
시키는 기술을 개발하였다.

본 연구에서는 Mg(OEt)₂를 축발 물질로 해서 전자 공여체인 THF(tetrahydrofuran)에 녹인 후 루이스 산
인 SiCl₄를 첨가하여 Mg(OEt)₂를 염소화시킨 후 TiCl₄
를 첨가하여 Mg-Ti간의 침투를 형성시켜 제조한 촉매로

2. 실험

2-1. 시약

 중합반응에 사용된 에틸렌은 (주)유공이 제공한 것을 Fisher사의 RIDOX관과 분자체관(5Å)을 통과시켜 각
간 산소와 수분을 제거하였고, 질소, 수소, 투를, 프로필렌 가스 등도 같은 방법으로 정제하여 사용하였다. 용매로 쓰이는 n-하이드록시산 네가의 델산약
(주)로부터 구입하여 태블을 금속을 넣어 절소 분위기 가운데서 분해시킴으로써 사용하였다. 촉매 제조에 쓰
이는 THF(Baker, 분석 시약용)는 Lithiumium hydride에서 약 2시간 이상 진조에서 환산시킨 다음 사용하였다. Mg(OEt)₂(순도 99% 이상), TiCl₄(순도
99% 이상), AlEt₃(25 wt%), SiCl₄(순도 99% 이상) 등은 Aldrich에서 구입하여 정제과정 없이 사용하였다.

2-2. 촉매합성

Mg(OEt)₂ 8 g을 350 ml THF에 넣고 50℃에서 교반시키면서 용매시켜 굴립용액으로 만들었다. 여기에 8.0

ml의 SiCl₄를 상온에서 1시간 동안 적시기고 나서 50

℃로 승온한 다음 2시간 동안 반응시켰다. 이 혼합용액에 TiCl₄ 3.7 ml을 주하여 50℃에서 1시간 동안 반응시켜

황색의 굴립용액이 얻어졌다. 이 굴립용액 촉매를 상

온으로 내린 다음 혜선을 침전시켜 과량을 가하여 상온

에서 완전히 침전시켜 황색의 미립자 형태의 촉매를 얻었다. 제조된 촉매를 조제 혜선(500 ml)으로 상온에서

3회 세척하여 마법공중에 촉야 성분을 제거하였다. 이

촉매를 0.7 mmol의 AlEt₃Cl로 촉매 부문화성을 얻기 위하여 중합반응에 사용하였다.

2-3. 에틸렌 중합

Fig. 1에 나타낸 삼상반응장치를 사용하였다. 반응기

는 250 ml 조사 반응기를 사용하였다. 에틸렌은 일정

압력으로 공급하였으며, 중합반응에 혼합조에서 에틸렌과 공정반응을 일정한 분리로 혼합한 다음 반응

기에 주입하였고, 수소를 주입한 경우 일정량의 수소를

gas tight 주사기를 사용하여 반응기 안으로 주입하였다.

주입된 반응기는 가능한 유량계(mass flow meter)의

전기 신호를 A/D 변환기를 통하여 컴퓨터에 입력하여 반응시킨 후에 반응속도를 측정하였다.

기상 중합반응은 조사 촉야의 본산을 촉매 하기 위

하여 NaCl 분말을 500℃ 이상에서 24시간 이상 진조시키며

 여기 반응반기에 넣고 절소/공정 상태로 3회 반복한 후

질소분위기로 만겼다. 먼저 공정에 AlEt₃을 gas
tight 주사기로 일정량 취하여 절소분위기의 반응반기에
주입하였다. 흙선 슬리피 상태로 보관된 촉매를 gas
tight 주사기로 일정량 취하여 반응용 안으로 주입하여
촉매를 활성화시킨 다음에 10 torr 이하의 진공펌프로
약 5분간 동반용기 내의 용매(hexane)를 제거한 후,
정소분획기에서 반응기를 반응장치에 장착시켜 반응
온도에 도달할 때까지 기다렸다.
중합반응은 반응 시작 전에 반응용기 내의 청소를 진
공펌프로 제거한 후 반응물을 약 2초 정도 주입한 위
저식 고반기를 돌리면서 시작하였다.
슬리피 중합기는 용매 내에 공 оказыва A1Et3를
미리 넣고, 반응기 안의 청소를 진공펌프로 제거한 후
반응물을 정량 용액적으로 통과시켜 반응이 안으로 주입
하여 정량 유량계의 눈금표시가 0을 가리킬 때 기에
상행성이 되었다고 판단하며 이 시간은 약 10분 정도
동안이다. 이후 촉매를 일정량 주사기로 취하여 주입
시켜 반응을 시작하였다.
중합 후 에탄올(95 vol%)과 염산(5 vol%) 용액으로
고분자 내에 남존하는 촉매의 활성점을 제거한 후 과
당의 염산올로 세척하여 고분자용 50°C의 진공함에서
전조하였다.

2-4. 촉매 및 중합물의 분석
촉매의 Ti 함량은 UV/VIS spectrophotometer를 이
용하여 측정하였고, 이 결과 흙선 슬리피 내의 Ti 함량은
2.15×10⁻⁴ g/Ti/cc이었다.
촉매의 표면적 측정은 BET 방법을 이용하였으며, 분
연구해서 사용된 촉매의 표면적은 177 m²/g이다.
에틸렌 중합물의 분자량은 점도 측정법으로 구하였다.
산화방식으로서 고분자 kg당 2 g의 santonox-R을 첨가
한 Decalin(Janssen Chimica, Holland) 45 ml에 0.05 g
의 고분자를 녹인 후 135°C에서 현미경 Ubbelode 점도계를
사용하여 one-point viscosity 방법[4]으로 고유점도[η]
을 구하였다. 평균 분자량은 다음 식 (5), (6)에 의해서
구하였다.

\[[\eta] = 6.24 \times 10^{-4} [M_0] \]

중합물의 용용지수는 ASTM D 1238 방법에 따라서
190°C에서 2.16 kg 부하를 가지하여 10분 동안 고분자가
흡수내린 무게를 측정하여 구하였다.

3. 결과 및 고찰

3-1. 에틸렌의 농도 영향

Fig. 2는 반응온도와 AI/Ti 용비를 일정하게 하고, 에
틸렌의 압력은 2에서 10 psig로 변화시켜 기상에서 중
합한 속도곡선을 보여주고 있다. Fig. 2에서 세로축의
중합반응속도는 반응기 내의 에틸렌이 중합반응에 의해
소모되는 양만큼 주입되는 에틸렌압을 시간변화에 따라
진장 양식에서 측정한 결과를 촉매 내의 Ti 함량으로
나누어 반응온도 속도변화를 나타내었으며 압력의 증
가에 따라 중합속도가 증가함을 알 수 있다. 또한 압력이
증가함에 따라 초기의 중합반응은 증가하나 비활성화
속도는 감소함을 보여주고 있다. 이와 비슷한 결과는
Keiji와 Marques 등[8]이 이미 보고하였다. 촉매의
비활성화 속도가 시간에 따라 차이가 나는 것은 촉매의
활성성이 두 개 혹은 그 이상으로 존재하기 때문에
Chien과 Kuo[9]는 설명하고 있다. 그리고 압력에
따른 1시간 동안의 평균중합속도를 Fig. 3에 나타냈고,
중합속도가 반응온도에 1차로 비례함을 알 수 있
Table 1. Molecular weight with different monomer concentration

<table>
<thead>
<tr>
<th>[M] (psig)</th>
<th>[η] (dl/g)</th>
<th>$M_w \times 10^{-5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.75</td>
<td>5.8</td>
</tr>
<tr>
<td>4</td>
<td>6.93</td>
<td>6.0</td>
</tr>
<tr>
<td>6</td>
<td>7.08</td>
<td>6.2</td>
</tr>
<tr>
<td>8</td>
<td>7.11</td>
<td>6.3</td>
</tr>
<tr>
<td>10</td>
<td>7.22</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Fig. 4. Gas phase polymerization rate profiles with different AlEt₃ concentration.
Polymerization conditions: Temp. = 50℃, Al/Ti = 99.3, [Ti] = 4.49 × 10⁻⁶ mol, Al/Ti in mol/mol: (a) 79.4, (b) 99.3, (c) 178.7, (d) 377, (e) 575.7, (f) 774.2

다. 그리고 측량의 활성중 농도($C*$)와 성장반응상수 (k_g)가 일정한 경우 총합속도식은 $R_p = k_g C[^*][M]$으로 나타낼 수 있다. 여기에서 $[M]$은 단량체의 농도이다.

Table 1로 반응압력이 증가함에 따라 생성된 고분자의 평균분자량은 증가함을 보여 주고 있다.

3-2. 촉매의 영향

촉매의 촉매에 대한 영향을 알아 보기 위하여 촉매인 AlEt₃ 농도에 따른 총합속도의 변화를 Fig. 4에 나타내었다. Fig. 4를 보면 Al/Ti 용량비가 79.4-377 사이에서는 초기의 반응속도가 증가하고, 비활성화되는 속도도 크지만, Al/Ti 용량비가 575 이상일 경우 초기의 활성화는 낮지만 중합시기에 따른 총합속도가 거의 일정하게 나타남을 알 수 있다.

$$R_p = \frac{k [A]}{1 + K_a[A]^2}$$

여기서 K_a는 알루미늄 알킬의 흡착정량상수, K_a는 액리ény의 흡착정량상수, [A]는 알루미늄 알킬의 농도, R_p는 총합속도를 나타낸다. 그리고 k는 $k_aC[^*][M]$으로 나타내고 [M]은 단량체 농도이다. 식을 다시 정리하면

$$[A]^2/R_p^{1/2} = K_a[A] + \frac{1}{(K_a[1]^{1/2} + [A]^{1/2})}$$

이 되고, Fig. 5는 $[A]^2/R_p^{1/2}$가 [A]와의 흡착량이 선형으로 나타남을 알 수 있다. 여기에서 구한 $K_a[1]$값은 296 l/mol, k의 값은 2.34 × 10⁻⁶ mol/sec였고, Keii 등[15]은 볼중재 방법으로 제조한 MgCl₂/EB/TiCl₄/AlEt₃ 촉매의 프로필렌 중합에서 K_a 값이 100 l/mol임을 얻었다. Vessely[16]도 TiCl₄/AlEt₃ 촉매에 의한 프로필렌 중합의 속도저항을 Langmuir-Hinshelwood me-
chanism으로 설명하였고, 여기에서 구한 K_A 값은 211 /mol이었다.
또한 Burfield 등[17]은

$$\frac{1}{R_g} = \frac{1}{k_A k_{m}[M]} + \frac{1}{k_C + k_C[A]}$$

와 같은 식을 제안하였는데 알루미늄 알킬의 양이 적을 때는 직선에서 벗어나는 경향을 보이지만, 1/R는 [A]가 적을 때 나타내는 것을 확인하였다.

1시간 동안의 평균충합속도를 풀롯한 Fig. 6을 보면 Al/Ti 용액이 377에서 가장 좋은 활성을 나타내었다. 중합반응시 Al/Ti용액이 낮을 경우에는 축약의 활성화 반응이 충분히 일어나지 않아서 중합속도가 감소하고, Al/Ti용액이 높을 경우는 축약 대에 존재하는 잔재적인 활성점들이 연속적으로 활성화되기 때문에 비활성화 속도가 낮지만 축약 활성점에서 공극물체 상자내에 경쟁 축착반응이 일어나기 때문에 전체적인 중합속도는 감소하는 것이라 생각한다. 이러한 결과는 Jeong 등[18]의 총계에서 사용한 경우의 경우 Al/Ti 용액이 증가함에 따라 일정 수준까지는 순간 최대 반응속도가 증가하나, 더욱 Al/Ti 용액이 증가하면 순간 최대 반응 속도가 감소함을 보여주는 것과 일치하는 결과이다. Burfield 등[17]이 불균일하게 배압충합에 대하여 경쟁 축착 개념을 적용하여 연구한 이후, Tait 등[19]은 MgCl₂/EB/TiCl₄ 축약에서 100-250 : 1의 범위에서 Al/Ti용액이 증가하면, k_C와 활성점의 농도 C^*가 감소하여 활성을 약간 감소한다고 하였다. 이는 경쟁체와 AlEt₃가 축약에 있어서 경쟁 축착 반응을 하기 때문으로 설명하고 있다. Keii 등[15]은 Al/Ti 용액이 10-50 범위에서 최적

Fig. 7. Gas phase polymerization rate profiles with different temperature.

Polymerization conditions: $[M]=6$ psig, Al/Ti=99.3, $[Ti]=4.49\times10^{-6}$ mol, Temp. in °C: (a) 25, (b) 40, (c) 50, (d) 60, (e) 70

활성도를 알루미늄 알킬에 의한 축액표면의 피복율로 설명하였다.

Table 2에서는 Al/Ti 용액을 달리하여 얻은 중합물의 평균분자량을 나타냈다. Al/Ti 용액이 증가하면 분자량이 감소함을 알 수 있다. 이는 알루미늄 알킬이 중합 반응에서 축약의 활성점 형성뿐만 아니라 시술이동체 (chain transfer agent)로서 작용하기 때문으로 생각할 수 있다.

3-3. 온도의 영향

Fig. 7에는 기상실외에서 중합온도를 25°C에서 70°C 로 변화시켰을 때의 기상 중합속도곡선을 나타내고 있다. 반응온도가 60°C까지는 중합속도가 증가하고 60°C 이상일 경우는 감소함을 보여주고 있다. 또한 초기 중합속도가 중합온도에 비례하고 있으며, 이는 중합 초기에 축약의 활성점 형성속도가 온도에 따라 달라지는 것을 의미한다. Fig. 8은 20-60°C로 반응온도를 슬러리
상에서 중합한 결과의 반응속도곡선을 보여주고 있다. 초기 중합속도는 기상보다는 슬러리에서 더 높으나 비활성화가 되지 않고 중합반응이 지속적으로 유지됨을 알 수 있다. 그러나 50°C 이상에서는 기상 중합반응보다 슬러리 중합반응에서 더 높은 활성을 나타내고 있다. 용매 사용하지 않는 기상 중합반응의 경우에 용매를 사용하는 슬러리 중합반응 보다 반응열을 제어하기가 어려다. Fig. 7을 보면 70°C에서 측정된 활성도가 감소하였는데 이러한 원인은 반응온도에 따라 열제가 축소되기 때문에 중합반응의 효과로 인해 측정된 활성도가 줄어드는 경향이 보인다. Han 등[13]이 MgCl₂/THF/TiCl₄/AlEt₃ 촉매계를 사용한 이데올로에 중합에서 얻은 결과와 유사하다. 그리고 Kim과 Woo[20]는 Mg(OEt)₂/Ti(OBu)/Benzoyl chloride계 촉매를 사용한 프로필렌 중합에서 촉매조성에 зависимости가 있는 반응속도를 일반적으로 논하기 어렵지만 활성도가 높은 종류의 활성화가 2개 또는 3개의 cluster 형태로 변하여 비활성화가 빠르게 진행되고, 또 다른 활성화는 주위에 이동하는 활성화가 없는 고립된 상태로 존재하기 때문에 비교적 안정하여 원활 중합 후에도 중합속도가 유지되도록 하는데 기여하며 설명하였다. Berger와 Griesvosen[21]은 슬러리 중합에서 낮은 온도일 때 활성화 에너지가 높고 Rₚ리는 단단해 설명될 수 있으며, 낮은 온도에서는 활성화 에너지가 낮고, 단단해 높은 자수에 비례하여 중합속도가 변한다고 하였으며, 낮은 온도에서는 화학반응이, 높은 온도에서는 단단해의 확산지향이 전반단계라고 해석하였다. Keii 등[22]은 65°C에서 반응온도중 23°C로 낮추었을 경우가 단순히 23°C에서 반응했을 때 보다 착한 중합속도를 보여주고 있으며, 이는 반응온도가 증가함에 따라 중합 활성도의 수가 비례적으로 감소하기 때문이라고 설명하였다. 중합속도의 온도의존성을 알아보기 위해 중합속도를 다음과 같이 쓸 수 있다.

\[R_p = k_p(C^*)[M]_0 \]

\[= k'[M]_0 \]

여기서 \(k' = k_0 \exp(-E_a/RT) \) 이므로 \(\ln(k' [M]_0) \) 간이 올 수 있다.

\[\ln(R_p/[M]_0) = -E_a/RT + \text{Constant} \]

Fig. 8. Slurry polymerization rate profiles with different temperature.
Polymerization conditions: [M] = 6 psig, Al/Ti = 99.3, [Ti] = 4.49x10⁻⁶ mol, Temp. in °C: (a) 20, (b) 30, (c) 40, (d) 50, (e) 60

Fig. 9. Relation between \(R_{p, 60 min}[M] \) and 1/T for gas phase polymerization.
Polymerization conditions: [M] = 6 psig, Al/Ti = 99.3, [Ti] = 4.49x10⁻⁶ mol

Fig. 10. Relation between \(R_{p, 60 min}[M] \) and 1/T for slurry phase polymerization.
Table 3. Molecular weight with different temperature

<table>
<thead>
<tr>
<th>Temp(K)</th>
<th>η</th>
<th>$M_w \times 10^{-5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>4.85</td>
<td>3.6</td>
</tr>
<tr>
<td>333</td>
<td>7.30</td>
<td>6.5</td>
</tr>
<tr>
<td>323</td>
<td>7.40</td>
<td>6.6</td>
</tr>
<tr>
<td>313</td>
<td>11.14</td>
<td>11.8</td>
</tr>
<tr>
<td>298</td>
<td>19.58</td>
<td>26.5</td>
</tr>
</tbody>
</table>

Table 4. Intrinsic viscosity and melt index with different hydrogen concentration

<table>
<thead>
<tr>
<th>$[H_2]$ (mmol/l)</th>
<th>η</th>
<th>$M_w \times 10^{-5}$</th>
<th>MI (g/10 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>2.40</td>
<td>1.3</td>
<td>0.335</td>
</tr>
<tr>
<td>0.08</td>
<td>2.16</td>
<td>1.1</td>
<td>0.422</td>
</tr>
<tr>
<td>0.16</td>
<td>1.70</td>
<td>0.81</td>
<td>1.095</td>
</tr>
<tr>
<td>0.25</td>
<td>1.48</td>
<td>0.66</td>
<td>2.790</td>
</tr>
</tbody>
</table>

Fig. 11. Gas phase polymerization rate profiles with different hydrogen concentration.
Polymerization conditions: $[\text{M}]=6$ psig, Al/Ti = 99.3, $[\text{Ti}]=4.49 \times 10^{-6}$ mol, Temp = 50°C, $[H_2]$ in mmol/l: (a) 0.0, (b) 1.4, (c) 2.86, (d) 5.7, (e) 8.0.

온도가 높아질수록 성장사슬의 정지 반응속도가 증가
되기 때문에으로 생각한다.

3.4. 수소의 영향
Fig. 11은 반응기에 주입된 수소의 양에 따른 기상
중합속도곡선을 나타낸 것이다. 주입되는 수소의 양이
2.86 mmol/l까지는 초기의 중합속도가 증가하나 그 이
상일 경우에는 수소를 덜 넣는 경우보다 감소함을
보여주고 있다. 에틸렌 중합에서 수소의 농도에 따른
촉매활성 변화에 대해서 비슷한 결과는 이미 Marques
등[8]이 이미 보고하였는데, 수소의 농도가 낮을 경우
촉매활성때 단락체의 긴급보다 수소가 쉽게 접근하여
반응하기 때문으로 설명하였다. 수소는 Natta[23]에 의
해서 사슬이동체로 사용됨을 처음으로 보고한 이래로
지금회-나나 촉매를 사용한 올레핀 중합에서 현재에도
사슬이동체로 삼입적으로 널리 이용되고 있다. 수소는
금속-탄소 결합점에 hydrogenolysis를 포함한 사슬이동
반응이 일어나게 하여 고분자가 많이 나가고, 금속-
수소 결합에 올레핀 분자의 첨가되면서 활성점이 재생되는
것으로 설명하고 있다.

Table 4를 보면 수소 첨가량이 증가할수록 분자량은
감소하고 용융지수는 증가됨을 알 수 있다. 수소량이
어느 일정량 이상일 경우에는 촉매의 활성점에 수소가
결합되어 촉매-수소 결합이 많이 생성되어 촉매를 비
활성화시키기 때문에 중합속도가 감소하는 것으로
생각된다. Chien과 Kuo[9]는 MgCl₂/EB/PC/AIEt₅/AIEt₃
/MPT 촉매에 의한 프로필렌 중합일 경우에 수소에
의한 중합반응의 속도변화를 Langmuir-Hinshelwood
mechanism으로 설명하였으며 반응속도가 수소농도에
대해서 다음과 같은 관계가 있음을 제안하였다.

$$R_s = k_0[C^*][\text{M}] \frac{K_{D}}{1 + K_{D}[\text{H}_2]}$$

수소를 소량 주입할 경우 활성이 증가하는 이유에
대해서는 아직까지 명확한 이유는 밝혀지지는 않았지만
Table 5. Property of copolymer with different propylene concentration

<table>
<thead>
<tr>
<th>Propylene(mol%)</th>
<th>η</th>
<th>MI(g/10 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.96</td>
<td>0.031</td>
</tr>
<tr>
<td>20</td>
<td>3.11</td>
<td>0.138</td>
</tr>
<tr>
<td>30</td>
<td>2.26</td>
<td>0.785</td>
</tr>
<tr>
<td>50</td>
<td>1.72</td>
<td>2.900</td>
</tr>
</tbody>
</table>

Table 6. Property of copolymer with different butene-1 concentration

<table>
<thead>
<tr>
<th>Butene-1(mol%)</th>
<th>η</th>
<th>MI(g/10 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.16</td>
<td>0.034</td>
</tr>
<tr>
<td>20</td>
<td>3.37</td>
<td>0.402</td>
</tr>
<tr>
<td>30</td>
<td>2.14</td>
<td>6.280</td>
</tr>
<tr>
<td>50</td>
<td>2.02</td>
<td>9.900</td>
</tr>
</tbody>
</table>

3-5. 에틸렌 공중합

Fig. 12와 13에는 에틸렌과 프로필렌, 에틸렌과 부텐-1과의 공중합 속도곡선을 보여주고 있다. 기상에서의
공산량체 농도가 20 mol% 이상에서는 종합속도가 증가하나 그 이상에서는 에틸렌 중합보다 반응속도가 감소하며, 부텐-1과의 공중합에서도 비슷한 현상을 보여주고 있다. Kim 등[26]이 MgCl2/THF/TiCl4 축매계
에서 에틸렌과 1,4-헥산과의 공중합에서 얻은 결과와 유사하다. 이는 공중합체가 축매 내에 삽입되어 있는 축
매의 형성점을 활성화시킴으로써 종합속도를 증가시키며, 공중합체의 함량이 많을 경우 축매가 지나치게 혼
인되어 탄단의 산화상태가 3가 보다는 2가가 많아져 종합속도를 감소시키는 것으로 생각된다. 지금까지는
공중합 반응이 단일중합 반응 보다 활성 증가 현상에
대해 정확한 메커니즘은 알려져 있지 않으나 결정성이
상대적으로 높은 플라스틱과의 주사면에 공산량체가
삽입되면 비결정성 영역이 증가하고 비결정성 영역에서
올려든 용해도는 결정성 영역에서 보다 높기 때문에
공중합 활성이 단일중합 활성보다 높다고 Bukatov[27]
가 설명하고 있다. 또한 Shangari[28]는 단일중합을 할
때 보다도 공중합 활성 형성도는 반응속도가 증가하거나
성장속도 상수가 증가하기 때문에 공중합 활성이 단일
중합 활성보다 높다고 설명하였다.

합성된 공중합물의 고유점도와 용용지수를 Table 5와
6에 나타났다. 고분자 내의 공단량체의 함량이 증가할 수록 고유점도는 감소하고 용융지를는 증가하였다. 이
러한 이유는 고분자 내에 공중합물의 함량이 증가할수록
비정상성 양이 많아지기 때문이다. 또한 공단량체의
양이 증가할수록 고유점도가 작아지는 것은 공단량
체가 고분자의 성장 연장에 정지시키기 때문으로 생각할
수 있다.

4. 결 론
본 연구에서 Mg(OEt)₂/THF/SiCl₄/TiCl₄ 촉매를 이
용하여 기상 및 슬러리상에서 에틸렌 중합 및 공중합
반응을 연구한 결과를 요약하면 다음과 같다.
(1) 성장중합속도는 단량체의 농도에 1차로 비례하
였다.
(2) Al/Ti비율이 377에서 가장 좋은 활성을 나타냈
으며, AlCl₃와 단량체가 촉매 활성점에 대해서 경쟁 흡
착반응이 Langmuir-Hinshelwood mechanism에 의해
중합속도의 변화를 설명할 수 있었다.
(3) 기상 중합과 슬러리 중합에서 활성화 에너지의
각각 4.7 kcal/mol, 13 kcal/mol로 슬러리 중합에서 더
높았다.
(4) 고분자의 분자량은 Al/Ti비율, 반응온도가 증가
함에 따라 감소하고, 단량체 농도가 증가함에 따라 증
가하였다.
(5) 프로필렌과 부텐-1을 이용한 기상 공중합에서
공단량체가 응용으로 20 mol%까지는 에틸렌의 단일 중
합보다 더 높은 활성을 보이나 그 이상에서는 낮게 나
타났다.

사용기호
A : aluminum alkyl
C* : number of active sites
K₀ : equilibrium constant of aluminum alkyl adsorption
Kₐ : equilibrium constant of hydrogen adsorption
Kₑ : equilibrium constant of ethylene adsorption
M₀ : propagation rate constant
Mₘ : monomer
Mₘₑ : the weight average molecular weight of polymer
Mₚₑ₆₀ : the average polymerization rate for 60 min
η : intrinsic viscosity

참고문헌
13. Han, J. D., Kim, I. and Woo, S. I.: Polymer(Korea), 13(2), 147(1989).
26. Kim, I., Kim, J. H., Choi, H. K., Chung, M. C. and