Removal of Cr(VI) from Aqueous Solution by Adsorbing Colloid Flotation

Sung-Gil Kang and Sang-June Choi*

Dept. of Chem. Eng., *Dept. of Env. Eng., KyungPook National University, Taegu 702-701, Korea
(Received 9 April 1993; accepted 22 June 1993)

Abstract—Experimental investigations on the removal of Cr(VI) from aqueous solution were carried out by adsorbing colloid flotation using sodium lauryl sulfate as a collector. The optimum pH for the removal of Cr(VI) was found to be about 4.0-4.5 using Fe(OH)₃ as an adsorbing colloid and about pH 4.0-6.5 using FeSO₄ as a reduction agent. The effects of surfactant(sodium lauryl sulfate), foreign ions(Na⁺, Ca²⁺, NO₃⁻, SO₄²⁻), and Al(III) on the removal efficiency were investigated. The adsorption and separation mechanism on the removal of Cu(II) ion by the foam separation techniques were observed.

1. 서론

가공분리기술(foam separation techniques)은 최초한 용액종에 녹아있는 물질이나 부유물질을 분리 또는 제거하는 기술로서 석유공업, 제조공업, 금속공업, 폐수처리 등에 널리 응용되고 있다[1-5].

가공분리기술의 원리는 제ین활성체를 이용하여 고체-액체 또는 기체-액체 계면을 활성화하여 용액중의 이온이나 부유물 등을 제닌활성물질로 전환시킴으로써 부유하는 기포에 흡착시켜 용액으로부터 분리하는 것이다.

가공분리기술은 기체-액체 계면에 제nin활성물질이 흡착하는 성질을 이용하여 용액중으로 기포를 상승시켜 제nin활성물질을 상승하는 기포에 흡착시켜 용액으로부터 분리시킨다. 제거하고자 하는 물질이 제nin활성화인 경우에는 용액중에 제nin활성물질을 가하여 제nin활성물질과의 결합 또는 흡착에 의해 제nin활성을 얻게 한 다음 여기에 기포를 부인시킴으로써 용액중으로부터 분리시킨다.

가공분리기술에는 녹아있는 형태로 분리시키는 가공분리법(foam fractionation)과 분용성의 물질을 분리시키는 가공분합법(froth flotation)이 있다. 가공분합법에는 용액중의 제 nin물질 또는 농축대상 물질에 따라 이
온부생법(ion flotation), 진부부생법(precipitate flotation), 흡착플로이드부생법(adsorbing colloid flotation) 등으로 구분된다. 이온부생법은 용액중의 이온을 포말의 재면, 즉 기체-액계의 재면을 계면활성제로 활성화시켜 이온이 포말 재면에 흡착되도록 하거나, 이온을 계면화 성체와 접합시켜 소수성에 의하여 포말에 흡착되도록 한 다음 포말을 회수하는 기법이며, 진부부생법은 용 액중의 이온을 첨정물의 형태로 만들어 그 첨정물의 표면을 계면활성제로 소수성으로 되게 한 다음 포말에 흡착시켜 그 포말을 회수하는 것이다. 또한 흡착플로 이드부생법은 용액내에 Fe(III)나 Al(III) 등을 첨가하여 흡착플로이드를 만들어서 이 흡착플로이드의 표면에 용액중의 이온이나 부유물이 흡착 또는 공정시킨 다음 계면활성제를 사용하여 흡착 또는 공정한 첨정물을 표 면을 소수성으로 만들어 상승하는 기포의 재면에 흡착 시켜 제거시키는 방법이다.

제수중의 최버한 중금속 처리를 위해서는 화학첨정 방법이 가장 많이 사용되어 왔다. 그러나 화학첨정방 법은 큰 침강 향상이 필요하며 수리의 부피가 크고 용해도 이하로의 감량이 고려되어 전류 중금속 이온의 농도를 충분히 낮게 유지하기 위해서는 최적적으로 과정에서 다시 여과하여야 하는 등 효율적 및 경제적인 문제로 야기된다. 이에 따라 거부분석은 용액중 건존하는 금속이온의 농도를 낮게 유지할 수 있고, 조작이 빠르고, 좋은 공간에서도 조립이 가능하고, 다양한 크 기의 여러 가지 금속에 적용이 가능하며, 비교적 적 가격으로 조립이 가능한 등 여러 장점이 있다.

최근에는 정체성, 설탕도 및 보료 효율성 때문에 첨 정부생법과 흡착플로이드부생법을 이용한 연구가 이루어지고 있다. Barson과 Ray(6)에 의하여 개발된 첨정부 생법은 이온부생법과 기름부생법에 비해 용액중 존재하는 부유이온의 영향을 최저계체 반영하며 적은 양의 계면활성제를 만들어서 적용하는 방법을 개발하였다. 7-10. 흡착플로이드부생법은 Zeitlin의 그룹을 이용한 이론에서 최근까지 많은 연구가 이루어졌다(13-21).

Cr(VI) 이온 제거를 위한 연구는 여러 연구가들에 의하여 이루어졌다. Bhattacharya 등(22)은 NaHSO₃를 사용하여 Cr(VI) 이온을 Cr(III)로 환원한 뒤 NaOH를 첨가하여 크롬 수산화물 첨정의 형태로 만들어 제거하는 첨정부생법을 개발하였다. Pietrenko(23)는 이온부생법과 첨정부생법으로 용액중의 Cr(III) 이온 제거를 했으며, Huang 등(24, 25)은 흡착플로이드로 Fe(OH)₃ 와 Al(OH)₃를 사용한 흡착플로이드부생법으로 Cr(VI) 이온을 제거하였다.

지금까지의 연구에서는 Cr(VI) 이온의 흡착플로이드 부생법의 분리 메커니즘에 대한 설명이 부족하고, 또한 수용액에 존재하는 다른 이온의 영향 및 pH 영향 등에 대한 연구가 잘 이루어져 있지 않았다. 본 연구에서는 Cr (VI) 이온을 Fe(OH)₃에 흡착시켜 제거시킨 흡착플로 이드부생법과 Cr(VI) 이온을 FeSO₄를 사용하여 Cr (III) 이온으로 환원시킨 후 Fe(OH)₃와 함께 Cr(OH)₃로 공정시켜 제거한 방법을 동시에 행하여 pH, 계면활성제 농도, 부유이온 등의 영향을 비교 실험한 결과, 아울러 각각의 방법에 따른 흡착기구 및 분리 mechamism을 규명하고 Al(III) 참가 이온이 Cr(VI) 이온 제거에 미치는 영향 등을 살펴보고자 한다.

2. 실험장치 및 방법

2-1. 시약
본 실험에 사용한 계면활성제는 시약급의 음이온 계 면활성제인 sodium lauryl sulfate(NLS)이다. Cr(VI) 이온 수용액은 태단화된 종류에서 사용하는 Na₃PO₄-·H₂O를 녹여서 만들었으며 첨정제로는 FeSO₄·7H₂O를 사용하였다. 흡착플로이드는 Fe(NO₃)₃·9H₂O와 Al(NO₃)₃·9H₂O를 사용하여 만들었으며 침하용으로는 NaNO₃, Ca(NO₃)₂, Na₂SO₄를 사용하였다.

2-2. 실험장치
Fig. 1에 본 실험에 사용된 실험장치를 나타내었다. 기포형렬은 pyrex glass로 만든 직경 3.5 cm, 높이 90 cm 의 것을 사용하였다. 기포는 침조가스를 사용하여 소결한 음이온파리를 통하여 만들었다. 침조가스는 실험 도중 수용액의 증발현상을 방지하기 위해서 물로 포화
시킨 다음 협용된 임자나 액체를 glass wool column을 통과시켜 분물을 제거한 다음 사용하였다.

2-3. 실험방법

Cr(VI) 수용액은 stock 용액(1000 ppm)을 사용하여 만들었다. Fe(III)를 사용한 홍차폴리드부경에서는 Cr(VI) 수용액을 첨가 한 텐크에 준비한 뒤 Fe(III) 이온을 적당량 첨가한 다음 NaOH를 가하여 pH를 조절하면서 공시험하였다. 공시험을 만든 다음 NLS을 가하여 전체 수용액 체적에 200 ml가 되게 한 다음 진조가스를 유리관에서 통과시켜 부상시험을 행하였다. FeSO₄를 사용한 홍차폴리드부경에서는 Cr(VI) 이온을 FeSO₄를 사용하여 Cr(III)로 환원시킨 후 적당량의 NaOH를 첨가하여 pH를 조절하면서 홍차폴리드부경 Fe(III)와 공시험 다음 부상시험을 행하였다. Cr(III)의 환원은 약산성 용액(pH 2.5-3.0)에서 자석식 교반기로 교반하여 만들었으며 Cr(VI) : Fe(III)의 농기가 1.00 : 3.26이 되도록 하였다. Cr(VI) 이온의 현한 정도는 잔존하는 Cr(VI) 이온을 신방(pH 1.5-2.0)에서 diphenylcarbazide로 채색하여 UV-Visible spectrophoto meter로서 그 정도를 확인하였다.[26]

실험을 시작하고 나서 5분마다 2 ml의 시료를 취하였으며 수용액중의 잔존 중금속이온의 농도는 원자량 광반점법(Shimadzu AA 610-S)을 사용하여 분석하였 다. 잔존 용액중의 methylene blue-chloroform 추출방 법을 사용하여 측정하였다.[27] 점검시킨 후 용액중의

점검 크롬이온 농도는 0.45 µm pore filter paper를 통과 시킴으로써 점검물을 분리한 수용액중의 크롬이온 농 도를 측정하였다.

3. 결과 및 고찰

3-1. pH의 영향

Fig. 2는 Fe(OH)₃를 홍차폴리드로 사용한 Cr(VI) 이온 제거시 pH의 영향을 나타낸 것이다. 실제로 점검은 여와 후의 수용액중의 잔존 Cr(VI) 이온 농도를 나타낸다. 그림에서 부정상적인(실선) pH 4.0-4.5의 범위에서 최적조건이 나타나며 0.5 ppm 미만으로 제거 할 수 있었다. 그러나 pH 3.5 미만에서는 Fe(OH)₃의 점검이 완전히 일어나지 않아 수용액중에 Fe(II) 이온이 존재하여 제거효율을 감소시키고, pH 4.4-5 범위에서는 Fe(OH)₃의 점검이 완전히 일어나 최적조건을 보인다. 그리고 pH 4.5 이상에서는 pH의 증가와 더불어 제거 효율이 감소하고 있다. 이것은 Fe(OH)₃의 점검에[28] 이 7.1 근처이므로 점검점에 기꺼워짐에 따라 철수화 물의 양이 감소하여 약간씩으로 점검의 크롬이온 농도를 줄여야 할 경우에 실효성의 점검치를 높이 않기 때문이다. Fig. 4의 (a)에 점검메기니즘을 나타내 었다.

Fig. 3은 FeSO₄를 홍차폴리드로 사용하여 Cr(VI) 이온을 Cr(III)로 환원한 다음 Fe(OH)₃와 공시험서 제거한 결
(a) Adsorption

\[\text{HCrO}_4^- \xrightarrow{\text{Adsorption}} \text{Fe(OH)}_3 \]

(b) Coprecipitation

\[\text{Cr(III)} \xrightarrow{\text{Coprecipitation}} \text{Fe(OH)}_3 \]

Fig. 4. Mechanism of adsorption and coprecipitation on the removal of Cu(VI).

Table 1. The effect of initial surfactant concentration on Cr(VI) removal by adsorbing colloid flotation with Fe(OH)_3

<table>
<thead>
<tr>
<th>Initial surfactant concentration (ppm)</th>
<th>Residual Cr(VI) concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>20.</td>
<td>5</td>
</tr>
<tr>
<td>30.</td>
<td>1.2</td>
</tr>
<tr>
<td>40.</td>
<td>1.0</td>
</tr>
<tr>
<td>50.</td>
<td>0.5</td>
</tr>
<tr>
<td>100.</td>
<td>0.5</td>
</tr>
<tr>
<td>150.</td>
<td>0.8</td>
</tr>
<tr>
<td>200.</td>
<td>1.7</td>
</tr>
<tr>
<td>300.</td>
<td>9</td>
</tr>
</tbody>
</table>

[Cr(VI) : 50 ppm, Fe(III) : 500 ppm, gas flow rate : 100 ml/min, flotation time : 30 min, pH : 4.5]

Table 2. The effect of initial surfactant concentration on Cr(VI) removal by reduction with Fe(SO)_4 to Cr (III) followed by adsorbing colloid flotation with Fe(OH)_3

<table>
<thead>
<tr>
<th>Initial surfactant concentration (ppm)</th>
<th>Residual Cr(III) concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>15.</td>
</tr>
<tr>
<td>100.</td>
<td>0.5</td>
</tr>
<tr>
<td>150.</td>
<td>0.5</td>
</tr>
<tr>
<td>200.</td>
<td>0.5</td>
</tr>
<tr>
<td>250.</td>
<td>0.9</td>
</tr>
<tr>
<td>300.</td>
<td>2.6</td>
</tr>
</tbody>
</table>

[Cr(VI) : 50 ppm, Fe(III) : 175 ppm, gas flow rate : 100 ml/min, flotation time : 30 min, pH : 6.0]

3-2. 초기 계면활성제 농도의 영향

Table 1과 2는 Fe(OH)_3를 흐름플로이드로 사용한 제거와 FeSO_4를 환원제로 사용한 Cr(VI) 이온 제거시 초기 계면활성제 농도의 영향을 각각 나타낸 것이다. Fe(OH)_3를 흐름플로이드로 사용한 제거의 경우 계면

활성제 농도 50 ppm에서 최적조건이 나타나고 있다. 최적조건에 이어서는 제거효율이 낮은데 이것은 낮은 계

면활성제 농도에서는 안정한 거품을 형성하지 못하여 결합을 따라 부상하던 공정물이 다시 용액중으로 재분

산되는 현상이 일어나기 때문이다. 또한 최적조건 이상으로 계면활성제의 농도가 증가함에 따라 제거효율이

감소하는 것으로 나타났다. 이것은 최적조건 근처에서는 공정물이 계면활성제와 결합하여 소수성을 떨기 되므로

수용성으로부터 분리가 가능하나 최적조건 이상으로

파괴의 계면활성제가 존재하게 되면 소수성을 떨기 있는

공정물 레이아웃에 다시 계면활성제가 흐름하게 되어 하층이

소수성을 떨기 되므로 제거효율이 감소하게 된다.

FeSO_4를 환원제로 사용한 제거에서는 계면활성제 농도 100 ppm 근처에서 안정한 거품을 형성하며 최적의 제

거가 이루어지는 것으로 나타나 NLS 농도 50 ppm

에서는 약 70% 정도 제거되는 것으로 나타났다. 이것

으로 보아 공정부상에 의한 제거에서는 흐름플로이드로

부상 보다 더 많은 양의 계면활성제가 요구됨을 알 수

있다. 이것은 Fe(III)를 흐름플로이드로 사용한 제거에

서는 Cr(VI) 이온이 얇게 풀리고 있는 Fe(OH)_3의 표면

위에서 높게 있는 HCrO_4^- 이온이 흐름하여 제거되는 비해,

FeSO_4를 환원제로 사용한 경우에는 Cr(III)로 환원되고 Fe(OH)_3와 공정이 제거되므로 최적의

pH 범위가 넓어졌다. Fig.4의 (b)에 공정 메커니즘을

나타낸 것이다.

화학공학 제31권 제5호 1993년 10월
가능하였으나, 계면활성제의 농도가 증가함에 따라 제거 후 용액의 전존 계면활성제의 양이 증가하게 된다. 또한 최적조건 이상으로 계면활성제의 농도가 증가함에 따라 제거효율이 감소하는 것으로 나타났다. 이것은 최적조건 근처에서 전수성을 가지고 있는 공첩물 표면에 음이온 계면활성제가 흡착하여 소수성을 뚫게 되므로 수용상으로부터의 분리가 가능하다. 최적조건 이상으로 과정의 계면활성제가 존재하면 소수성을 뚫고 있는 공

3.3. 외부 음이온의 영향

Fig. 5와 6은 Fe(OH)₃를 홍차폴리드로 사용한 제거와 FeSO₄를 환원체로 사용한 제거시간 외부 음이온의 영향을 각각 나타낸 것이다. NO₃⁻와 SO₄²⁻의 음이온은 소다작용의 형태(NaNO₃, Na₂SO₄)로 도입하였다. 그림에서 이가의 SO₄²⁻ 음이온의 영향이 일가의 NO₃⁻ 음이온의 영향보다 훨씬 심각한 것으로 나타났다. 이것은 SO₄²⁻ 음이온이 NO₃⁻ 음이온보다 약화될 때 뚫고 있는 공첩물에 더욱 감각하게 결합하여 음이온 계면활성제의 공첩물 표면의 흡착을 방해하기 때문으로 생각된다.

3.4. 외부 양이온의 영향

Fig. 7과 8은 Fe(III)를 홍차폴리드로 사용한 제거와 FeSO₄를 환원체로 사용한 제거에서의 외부 양이온의 영향을 각각 나타낸 것이다. Na⁺와 Ca²⁺의 양이온은 nitrate의 형태(NaNO₃, Ca(NO₃)₂)로 도입하였다. 그림에서 이가의 Ca²⁺ 음이온의 영향이 일가의 Na⁺ 음이온의 영향보다 훨씬 심각한 것으로 나타났다. 이것은 Ca²⁺ 음이온이 음이온 계면활성제에 대해 표면에 양화할 때 뚫고 있는 공첩물에 서도 생성하게 되어 공첩물 표면에 대한 계

HWAHAK KONGHAK Vol. 31, No. 5, October, 1993
3-5. Al(III) 이온 첨가의 영향

Fig. 9는 Fe(OH)₃를 흐착물말로 사용한 흐착물로이드부서에 의한 첨가에서 Al(III) 이온 첨가에 따른 pH의 영향을 나타낸 것이다. 그림에서 Al(III) 이온을 첨가하지 않았을 경우(끔은 점선)에는 pH 4-4.5 근처에서, Al(III) 이온을 첨가함으로써 낮은 pH 범위의 조건에서 Cr(VI) 이온을 제거할 수 있었다. 이것은 Al(OH)₃의 물에서의 첨가점[28]이 9.1 근처로 Fe(OH)₃의 첨가점 7.1보다 높기 때문에 최적 pH가 이동하며, 아울러 Al(III)과 공침물의 zeta potential을 증가시켜 공침물과 계면활성체의 첨화력이 증가하므로 보다 낮은 범위의 pH 영역에서도 제거가 이루어졌다.

Table 3은 FeSO₄를 환전체로 사용한 첨가에서 외부 이온이 존재하는 경우 Al(III) 이온 첨가의 영향을 나타낸다. 표에서 나타난 바와 같이 Al(III) 이온의 첨가에 따라 제거효율이 항상되는 것으로 나타나며, SO₄²⁻ 이온 농도 0.02 풍부한 Cr(III) 이온을 20 ppm 첨가하여 효율적으로 제거할 수 있었다. 이와 같이 Al(III) 이온을 첨가함에 따라 제거효율이 항상되는 것은 Al(III)가 activator로서 작용하여 floe의 표면전하를 더욱 강하게 만들어서 이온의 계면활성체의 흐착이 더욱 강하게 일어나기 때문으로 생각된다.

4. 결론

(1) 수용액중의 Cr(VI) 이온을 음이온 계면활성제인 sodium lauryl sulfate를 사용하여 Fe(OH)₃를 흐착물로이드로 사용한 첨가와 FeSO₄를 환전체로 사용한 첨가의 흐착물로이드부상법을 각각 행하였으며 간존 Cr (VI) 농도를 환경기준치인 0.5 ppm 미만으로 제거할 수 있었다.

(2) 흐착물로이드부상에 의한 Cr (VI) 이온 제거 효율은 pH에 큰 영향을 받는 것으로 나타났다. 최적 pH는 Fe(OH)₃를 흐착물로이드로 사용한 경우에서는 pH 4.4.5, 그리고 Al(III) 이온을 소량으로
초록률로드부상법에 의한 수용액중의 Cr(VI) 이온 제거