Variation in the Surface and the Gasification Properties of Coal Chars with Pyrolysis Rates

Nam Soo Park, Sang Heup Moon, Ho-In Lee, Wha Young Lee and Hyun-Ku Rhee

*Dept. of Chem. Eng., *Dept. of Chem. Tech., Seoul National University, Seoul, Korea

(Received 7 October 1992; accepted 31 December 1992)

Abstract—Indonesian lignite and Chinese bituminous coal were pyrolyzed under different heating rates between 1°C/min and 150°C/min, and the chars obtained thereby were steam-gasified in a fixed-bed micro-reactor at temperatures between 800 and 1000°C and under the steam partial pressures between 0.26 and 0.57 atmospheres. The chars obtained by fast pyrolysis at the heating rate of 150°C/min exhibited higher gasification rates than the chars pyrolyzed at the heating rates lower than 25°C/min, but the apparent activation energies of gasification of the two samples were almost same: 114 KJ/mol and 113 KJ/mol. The char surface areas estimated by gas adsorption exhibited opposite results depending on the adsorption gas, N₂ or CO₂. The surface areas estimated from CO₂ adsorption were higher for the fast-pyrolyzed chars than for the slowly-pyrolyzed ones. Formation of many micropores in the fast-pyrolyzed chars, evident from transient pressure change in the adsorption experiment, was responsible for the relatively high gasification rates.

요 약

인도네시아산 갈탄과 중국산 연청탄을 질소분위기에서 700°C까지 1°C/150°C/min 범위 내의 각각 다른 송온속도로 가열하면서 열분해시킨 후에 얻어진 석탄차에 대하여 수증기 가스화 반응특성을 비교하였다. 삼입의 고정층 반응기에서 가스화 반응을 수행하였는데 반응온도는 800-1000°C, 수증기의 분압은 0.26-0.57기압의 범위에서 변화시켰다. 150°C/min의 가열속도하에서 고속 열분해된 차(fast char)가 25°C/min 이하의 저속에서 열분해된 차(slow char)보다 활성 높은 가스화 반응속도를 보였으나 결로기 활성화 에너지는 각각 114 KJ/mol과 113 KJ/mol로서 거의 차이가 없었다. 차의 표면적을 높이, 이산화탄소의 홀착실험으로 추정한 결과 서로 상반된 결과가 얻어졌는데, 이는 시료들의 미세구조 차이 때문인 것으로 판단된다. 이산화탄소 홀착을 기준으로 한 표면적은 fast char가 slow char보다 더 높았다. Fast char는 미세구조들이 많이 형성된 것을 기반 홀착실험을 통하여 확인하였는데 fast char가 높은 가스화 반응속도를 보이는 것은 주로 이같은 물리적 특성 때문인 것으로 해석된다.

이 연구에서는 이처럼 다양한 결과를 주는 석탄의 열 분해 조건에 대하여 관찰하였다. 연구에 사용된 석탄시료들은 총이지의 일부 논문[9, 10]의 연구에서 사용한 것과 동일하다. 단지 논문 연구에서는 각 석탄시료를 동일한 조건에서 열분해시킨 후에 반응특성을 관찰한 반면에 이 연구에서는 열분해 가열속도를 바꾸어가며 얻은 차의 가스화 반응 및 표면특성을 관찰하였다. 박영철 등 [11]의 논문에서도 지적하였다가 석탄의 최종 열분해 운도에 따른 가스화 반응특성의 변화에 관한 연구는 지금까지 국내외에서 비교적 많이 이루어졌지만[12, 13], 열분해 속도의 변화에 따른 연구는 많지 않으며 더욱이 열분해 운도의 영향을 가스화 반응특성과 관계하여 관찰한 예는 드물다. 이 연구에서 가장 큰 관심이 되었던 문제는 열분해 처리에 의하여 석탄 표면의 물리적 특성이 변화하는지 아닌지 화학적 특성까지 변화하는지 하는 점과, 이건 표면 특성의 변화가 차의 가스화 반응특성을 어느 범위까지 변화시키는지 하는 점이었다. 아래에서는 수행된 실험의 내용과 결과에 대하여 설명하고 이건은 실험결과와 의외에 대하여 도의 하겠다.

2. 실험

2-1. 시료차의 제조
가스화 반응속도는 \(\frac{dx}{dt} \) (단위: 1/min)로부터 구할 수 있다. 시료들의 표면적은 질소와 이산화탄소의 흡착방법으로 측정하였는데, 질소 흡착에는 Quantachrom사의 Quantasorb를 사용하였고 이산화탄소 흡착에는 실험실 내의 초저흡착장치를 사용하였다. 초저흡착장치의 진공도는 \(10^{-5} \) Torr까지 얻을 수 있었다. 한편, 시료의 기공도는 Micrometrics사의 Auto Pore II 9220을 사용한 수중침투법으로 측정하거나, 또는 이산화탄소의 흡착시에 측정한 압력변화곡선을 해석하여 평균기공크기를 비교하였다.

3. 결과 및 토론

3-1. 추가 열분해의 효과

앞에서 설명한 바와 같이 열분해 조건은 시료석탄을 700°C까지 서로 다른 습도속도로 가열한 반면에, 이렇게 얻어진 차를 수증기 가스화시킨 온도는 950°C 이상이 있다. 따라서, 1차로 열분해된 시료를 가스화 온도까지 습한 환경이나 또는 가스화 반응 도중에 차가 추가로 열분해 반응을 일으킨다고 보아야 할 것이다. 1차 열분해시킨 얻은 차가 950°C까지 가열되는 동안 얼마나 추가로 열분해되는지를 알아보기 위하여 인도네시아산 강탄으로부터 얻은 차를 다시 질소분위기에서 25°C/min으로 가열하면서 2차의 열분해 실험을 하였다. Fig. 1의 결과에서 보면 1차 열분해시의 습도속도가 25°C/min
이하인 경우(그림에서 a, b, c의 경우)에는 추가 열분해로 기체가 생성되는 온도가 1차 열분해의 최종온도와 대략 일치하는데 비하여, 1차 열분해가 급격히 일어난 경우(그림에서 d의 경우)에는 최종온도인 700°C보다 낮은 온도에서도 약간의 기체가 발생함을 알 수 있다. 이것은 급격한 승온과정을 거친 차의 경우 석탄시료가 완전히 열분해되지 않았거나 또는 열분해의 전구체(precursor)가 시료 중에 일부 남아있음을 의미한다.

이들은 이들이 차 시료들에 있어서 기체가 본격적으로 발생하는 것은 1차 열분해의 최종온도보다 높은 온도에서부터이며 온도가 800°C 이상이 되면 오히려 기체발생량이 감소하는 현상을 보인다. 생성기체의 총량은 1차 열분해시의 흡수율도가 같을 때에는 최종온도가 낮을수록, 최종온도가 같을 때에는 흡수율도가 빠른수록 많아진다. Fig. 1(d)에 보인 수소의 최대발생량은 b, c의 경우에 비하여 작지만, 각 발생기체의 흡수율도를 모두 더해서 계산한 기체총발생량은 d의 경우에 가장 많다. 그 깊은 은 d의 경우에 기체가 비교적 낮은 온도부터 발생하기 시작할 때, 또한 CO의 발생량도 900°C 이상에서도 상당한 크기로 유지된 특이하다. 또한 각 생성기체의 양은 수소가 가장 많고 CO, CO2, CH4의 순서로 감소하는데 이것은 다른 연구의 결과와도 일치한다[9].

열분해된 차 중에서 추가열분해로 인한 기체발생량이 가장 많은 고속열분해시(위의 그림에서 d의 경우)를 950°C의 일정한 온도에서 열분해시켰을 때에 생성되는 기체들의 양과 조성을 Fig. 2(a)에 나타내었다. 그리고 역시 같은 시료를 950°C에서 수증기 가스화시켰을 때 생성되는 기체들의 분포 및 양을 Fig. 2(b)에 나타내었다. 여기서 보면 950°C에서 열분해로 발생하는 기체들은 그 양이 시간에 따라 급속도로 감소하며 더구나 수증기 가스화에 의하여 발생하는 기체의 양과 비교할 때에는 거의 무시할 수 있는 정도이다. 따라서 석탄시료를 700℃까지 1차 열분해시키고 여기서 얻은 차 시료를 950℃ 이상에서 수증기 가스화시킬 때에 시료의 추가열분해로 인한 영향은 무시할 만하다.

3-2. 수증기 가스화 반응특성
열분해 조건에 따른 차의 가스화 반응특성변화를 알
이보기 위하여 인도네시아산 갈탄을 열분해시킨 차들에 대하여 반응온도 1000℃, 수증기방압 0.5기압의 조건에
서 수증기 가스화 반응실험을 수행하였다. Fig. 3에서
보면 수온속도를 각각 1℃/min, 5℃/min, 25℃/min으로
달리면서 얻은 차들(이하 slow char라고 부름)은 가스화
반응속도에 큰 차이를 보이지 않으나 150℃/min의 급
속한 열분해로 얻은 차(이하 fast char라고 부름)는 두
resultCode 차이를 보이고 있다. 따라서 수온속도가 25℃/min
이하인 경우에는 수온속도가 차의 반응성에 큰 영향을
미치지 못하는 반면에 급속한 열분해를 거친 차는 높은
가스화 반응성을 가짐을 알 수 있다. Fig. 3에 나타난
국선의 초기기울기로부터 구한 가스화 반응속도는 1℃/
in, 5℃/min, 25℃/min 수온의 경우에 각각 0.023
min⁻¹, 0.021 min⁻¹, 0.021 min⁻¹로서 서로 비슷하지만
급속 열분해된 차의 경우에는 0.032 min⁻¹으로 얻었다.
Fig. 4는 중국산 대동탄에 대하여 위와 유사한 실험을 한
결과인데 이 경우에도 fast char는 slow char보다 높은
가스화 반응속도를 보이고 있다.

최도[9]은 석탄가스화의 반응속도를 미반응 속도 모델(unreacted shrinking-core model)로 모사할 수 있
다고 하였는데, 이것은 해석의 따른가 이 연구에서도
앞의 반응 실험결과를 반응시간(X)의 1

\(\frac{1}{1-X} \)

과 전체의 1에서 도시하였다가 좋은 성형성을 보였으며, 미
반응상한량에 대한 반응차수(N)도 석탄
시료 및 열분해 속도에 관계없이 모두 2/3값을 보였다.
따라서 가스화 반응은 차시료들의 열분해 조건에 관계
없이 표면반응이 율속단계인 미반응 속도 모델로 모
사할 수 있으며, 이것은 앞에서의 연구결과(9)와도 일
치하는 것이다. t에 대한 1-(1-X)의 기울기로부터
구한 가스화 반응시간(t)은 인도네시아 갈탄의
fast char, slow char, 중국산 대동탄의 fast char, slow char에 대하여 각각 81, 107, 97, 125분인데, 이 결과로
부터도 fast char보다 slow char보다 가스화 반응성이 높
음을 알 수 있다.

열분해 조건에 따른 차 시료의 표면 친수성(hydrophobicity) 변화를 알아보기 위하여 인도네시아산 갈탄의
fast char와 slow char에 대하여 반응온도를 1000℃로
고정시키고 수증기의 분압을 0.26-0.5기압 범위에서 변
화시키며 가스화 반응실험을 하였다. Fig. 5의 결과에서
보면 수증기 분압에 대한 의존도는 fast char의 경우에는
slow char의 경우보다 다소 높으며, 따라서 열분해속도는
차 표면의 친수성에 영향을 미칠 것을 알 수 있다. 그러나
이같은 친수성의 변화는 fast char가 slow char보다 가
스화 반응속도가 높게 되는 주요원인은 아닌 것으로 보
인다. 즉, Fig. 5에서 보면 실험의 범위 내에서 fast char는
수증기의 분압에 상관없이 항상 slow char보다 높은 반
응속도를 보이고 있으므로 두 가지 차시료간의 반응속도
차이는 수증기분압 외의 다른 원인에 기인한다고 보
아야 할 것이다.

수증기분압을 0.5기압으로 고정시키고 반응온도를 달
리하여 얻은 가스화 반응속도를 Arrhenius plot한 것이
Fig. 6에 표시되었는데, 이 결과는 열분해 속도가 다르

Fig. 4. The steam-gasification rates of Chinese bitumi-
nous-coal char at 1000℃ under the steam partial
pressure of 0.5 atm. Symbols in the figure designa-
te the pyrolysis conditions for the sample chars.

Fig. 5. Changes in the steam-gasification rates of Indone-
siian lignite chars at 1000℃ with different steam
pressures. Symbols in the figure designate the py-
rolysis conditions for the sample chars.
다리도 가스화 반응의 경보가 활성화에너지(apparent activation energy)가 거의 변하지 않을음을 알해본다. Fig. 6.으로부터 구한 활성화에너지값은 fast char의 경우에 114 kJ/mol이고 slow char는 113 kJ/mol이다. 따라서 이 연구의 범위에서 열분해폭가는 가스화 반응의 활성화에너지가 바뀔만큼 차 시료의 화학적 반응성(reactivity)에 영향을 주지 않는 것으로 판단된다.

이상의 반응결과를 요약하면 다음과 같다. 즉, 석탄시료의 종류와 열분해폭도에 관계없이 가스화 반응속도는 표면반응은 활성화 반응속도를 결정하는 미반응 수족적 모델로 모사할 수 있으며, fast char는 slow char보다 항상 높은 반응속도를 보인다. 이같은 반응속도의 차이는 시료의 화학적 반응성차이가 다른 탐도 있지만 그 정도의 차이가 주요원인은 아니며, 다른 시료들의 활성화 반응성 차이에 따른 것이다.

3-3. 시료의 물리적인 특성변화
다른 문헌들[1, 11, 14]에 의하면 석탄시료를 400°C 이상의 고온으로 가열하여 열분해시에 미세가스가 생성되며, 특히 짧은 녹도의 열분해를 거쳐 만들어진 차가 느린 열분해를 거쳐 만들어진 차에 비하여 평균적이 더 큰 것으로 알려졌다. 이같은 경향이 본 연구의 경우에도 나타나는지를 확인하고 반응심결과를 해석하기 위하여 두 가지 석탄시료의 slow char와 fast char들에 대한 표면적 및 기공분포를 측정하였다. 각 시료의 표면적을 염제질소온도(77 K)에서 질소흡착소

<p>| Table 1. Surface areas of various coal chars measured with N₂ and CO₂ at different temperatures (unit: m²/g) |</p>
<table>
<thead>
<tr>
<th>Char</th>
<th>Surf. area</th>
<th>N₂(27 K)</th>
<th>CO₂(195 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lignite Slow</td>
<td>char</td>
<td>110</td>
<td>349</td>
</tr>
<tr>
<td>(25°C/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>char</td>
<td>11</td>
<td>420</td>
</tr>
<tr>
<td>(150°C/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bituminous Slow</td>
<td>char</td>
<td>35</td>
<td>238</td>
</tr>
<tr>
<td>(25°C/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>char</td>
<td>14</td>
<td>286</td>
</tr>
<tr>
<td>(150°C/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

분만 시간에 걸쳐서(평형매일에 도달할 때까지 1시간 이상을 기다렸다) 흡착시외 결과가 Table 1에 수록되었다. 표면적 계산에 있어서 알의 두 방법, N₂(77 K)와 CO₂(195 K), 의 실험결과는 BET식을 사용하여 해석하였다[15]. 여기서 보면 질소흡착 표면적은 이산화탄소의 흡착과보다 작으며, 또한 slow char가 fast char보다 더 큰 표면적을 가진 것으로 나타났다. 그러나 이산화탄소의 흡착결과에서는 이와는 반대로 fast char가 slow char보다 항상 큰 표면적을 가진다.

Fig. 7. Pore size distribution in Indonesian lignite and its chars.
(a) Raw coal, (b) Char obtained by pyrolysis at 150°C/min, (c) Char obtained by pyrolysis at 25°C/min.

Fig. 8. Transient behavior of CO₂ adsorption on coal chars at 195 K.
(a) Chinese coal chars, (b) Indonesian coal chars. Symbols in the figures designate the pyrolysis conditions for the sample chars.

영분해 조건에 따른 차의 기공구조 변화를 mercury porosimeter로 측정한 결과가 Fig. 7에 표시되었다. 여기서는 대략 10 nm 이상의 macropore만을 관찰할 수 있는데, fast char의 경우에는 원료석탄의 기공구조(예를 들어 1-10 μm 부분)가 비교적 잘 보존된 반면에 slow char에서는 상당히 합물되었음을 두려워 할 수 있다. 이같은 경향은 이 논문에서는 보이지 않았지만 중국탄에 대한 porosimeter 측정결과에서도 마찬가지로 관찰되었 다. 앞의 Table 1에서 보인 치료의 표면적은 1 μm 이상 크기의 macro-pore들이 보다는 10 nm 이하 크기의 micropore들이에 의하여 대부분이 결정되어 Fig. 7의 결과는 차의 표면적과 반응결과는 무관하다고 본 수도 있 으나, 문헌[6]에서는 macro-pore와 micropore의 표면적이 서로 비례관계가 성립한다고 주장한 예도 있어서 fast char는 slow char보다 micropore들도 더욱 발달되어 있다고 보어야 할 것이다.

실제로 이러한 micropore 구조의 변화를 확인하기
Table 2. Relative diffusivities of gases in the coal chars estimated from transient behavior of CO2 adsorption at 195 K

<table>
<thead>
<tr>
<th>Char</th>
<th>Diffusivity</th>
<th>(M_\infty \sqrt{D^*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesian lignite</td>
<td>Slow char</td>
<td>1 (reference)</td>
</tr>
<tr>
<td></td>
<td>(25°C/min)**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fast char</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>(150°C/min)**</td>
<td></td>
</tr>
<tr>
<td>Chinese bituminous</td>
<td>Slow char</td>
<td>1 (reference)</td>
</tr>
<tr>
<td></td>
<td>(25°C/min)**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fast char</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>(150°C/min)**</td>
<td></td>
</tr>
</tbody>
</table>

*For derivation, refer to eq. (2) in the text.
**Heating rate during coal pyrolysis.

위하여 195 K에서 석탄의 이산화탄소의 초기 흡착속도를 비교한 결과가 Fig. 8에 표시되었다. Fig. 8에서 보면 slow char는 비교적 빠른 흡착이 진행되는 반면에, fast char는 상당시간이 지난 후에도 계속해서 흡착이 이루어지고 있는 것으로 보아 실험조건에서 흡착계가 상당한 확산시간을 보유할 수 있다. 이 결과를 사용하여 Fig. 8에서의 확산시간에 의하여 해석하면 Table 2에 수록된 바와 같이 흡착계의 상대적인 확산계수값을 비교할 수 있다. 즉, 다공성 구형질의 내부로 기체가 확산해 들어가는 양은 시간에 따라 다음과 같이 표시된다[20].

\[
M(t) = \frac{6}{M_\infty} \left(\frac{D t}{L^2} \right)^{1/2} \sum_{n=1}^{\infty} \text{erfc} \left(\frac{nL}{\sqrt{D} t} \right) \quad (1)
\]

여기서 \(M(t) \)는 시간 t 경과한 후의 확산량, \(M_\infty \)는 시간이 충분히 오래 경과한 후의 확산량이고, \(D \)는 확산 계수, \(L \)는 특성길이(characteristic length)로서 입자의 평균반경에 해당한다. 위의 식에서 양호한 두 번째 항은 크기가 작으므로 무시할 수 있으며, 그러면 (1) 식은 아래와 같이 단순화된다.

\[
M(t) = \frac{6}{M_\infty} \left(\frac{D t}{\pi L^2} \right)^{1/2} \quad (2)
\]

흡착시험에서 관찰한 시간에 따른 기체압력, \(P(t) \)의 변화로부터 \(M(t) \)을 구할 수 있으므로, \(M(t) \)을 \(\sqrt{t} \)에 대하여 보간하여 그 기울기로부터 \(M_\infty \sqrt{D^*} \)의 상대적인 값을 얻을 수 있다. 정확히 말해서 \(M(t) \)값은 시료에 따라서 다소가إصابة에 \(M_\infty \sqrt{D^*} \)의 상대적인 크기로부터 확산계수, \(D \)의 값을 비교할 수는 있지만, 이 연구에서는 fast char가 slow char보다 흡착 표면적도 둔에도 불구하고 \(M_\infty \sqrt{D^*} \)값이 오히려 작게 나타난 점으로 보아 fast char는 slow char보다 흡착계수가 매우 작음을 알 수 있다.

차 시료의 물리적 특성을 대한 이 연구의 실험결과를 요약하면 다음과 같다. Fast char가 slow char보다 높은 표면적을 갖는 사실이 이산화탄소의 흡착량으로부터 확인하였으며 이산화탄소의 치아는 특히 fast char에 미세기공(micropore)들이 많이 때문인 것인 195 K에서 이산화탄소의 흡착속도 관찰을 통하여 입증하였다.

4. 결 론

이 연구에서는 석탄시료를 승은속도를 달리하며 열분해시켰을 때 얻어진 차의 수증기 가스화 반응특성이 변화하는 것을 관찰하고, 그 변환에 의해 발생하는 원인을 밝히기 위하여 필요한 실험을 수행하였다. 승은속도가 25°C/min 이하로서 비교적 저속열분해가 이루어진 경우 승은속도에 따른 수증기 가스화 반응속도의 차이가 없지만 수온속도가 150°C/min의 고속열분해의 경우 시료 무게량의 반응속도가 증가하였다. 이 연구에서 특히 관심이 되었던 문제는 열분해 속도가 차의 화학적 특성을
변화시키는지 아니면 단순히 물리적인 특성만을 변화시키는지 하는 점이었는데, 실험결과에 의하면 고속 열화 통해 차의 반응속도가 증가하는 원인은 주로 시료의 표면적 증가 때문인 것으로 밝혀졌다. 열화한 속도에 따라 차 시료의 츄속성이 약간 변화하며, 시료 내의 micropore 표면적과 평균기공기의 크기에 큰 변화하는 것으로 나타났다. 따라서, 이 연구의 실험범위에서 석탄의 열화한 속도는 주로 차 시료의 물리적인 특성만을 변화시킨다고 결론지을 수 있다.

감 사

이 연구는 동력자원부에서 주관하는 대체에너지 기술개발사업의 연구결과입니다. 그동안의 연구비 지원에 감사드립니다.

참고문헌