국산규조토여과제가 Cake Filtration의 특성에 미치는 영향

운석호·나종록·조원선

충남대학교 공과대학 화학공학과
(1989년 3월 31일 접수, 1989년 6월 20일 채택)

Effects of Domestic Diatomite Filter Aid on the Characteristics of Cake Filtration

S. H. Yoon, J. B. Nah, and W. S. Cho

Department of Chemical Engineering, College of Engineering, Chugnam National University
(Received 31 March 1989; accepted 20 June 1989)

요 약

국산규조토여과제를 사용하여 cake filtration에서 filter cake의 공극률과 국소여과비저항이 filter cake에 가해지는 압력에 따라 변화하는 특성을 filter cell에서 실험적으로 고찰하였다.

실험에 사용된 시료는 탄산칼슘, Talc(I) 및 Talc(II) 슬러리와 규조토여과제였으며 여과제에는 body feeding 및 precoating 하여 사용하였다.

실험 결과 압력이 증가함에 따라 filter cake의 공극률은 감소하였고 국소여과비저항은 증가하였다. 여과제를 참가하면 filter cake의 공극률이 증가되어 국소여과비저항을 줄일 수 있다.

Abstract—Variations of porosity and specific local filtration resistance in cake filtration were studied in a filter cell. Samples used were slurries of CaCO₃, Talc(I) and Talc(II) and diatomite filter aids, which were used by body feeding and precoating.

From the experimental result, the porosity of filter cake decreased and the specific local filtration resistance increased with increasing pressure. The addition of filter aids increased the porosity of filter cake and it resulted in decreasing the specific local filtration resistance.

1. 서 론

국내의 화학공장 및 제약공장 등에서 다양한 과-액 분리를 효과적으로 처리하기 위한 여과방법으로 여과조제의 사용은 이미 널리 알려져 있다. 또한 새로운 여과조제의 개발 및 품질개선 그리고 여과조제의 효율적인 사용방법에 관한 연구 역시 꾸준히 이루어지고 있다 [1-3].

지금까지 보고되어 온 문헌들에 의하면 filter cake의 내부호흡과 메카니즘이 전체여과과정의 특성을 결정하는 데 중요한 역할을 하는 것으로 알려져 있으며[4-6], 여과의 이론적 해석은, Carman[7], Ruth[8] 등에 의해 압축투과기구와 도입된 이후 실험적인 상호관계를 얻는 데에 중점을 두어 오다가, 특히 Grace[9], Shirato 등[10-15], Kottwitz와 Boylan[16] 등에 의해 제안되었다. 이와 같은 내부호흡과 메카니즘의 분석적인 연구결과는 소위 현대여과론에까지 발달하였고, 최근에는 이러한 이론에 입각하여 Yoon 등[17]은 cake filtration에서 압력에 따른 공극률과 국소여과비저항의 변화특성을 연구하였다. 그러나 이러한 연구
는 여과조제의 사용방법이 body feeding으로만 국한되어 있었다. 따라서 본 연구에서는 구조요소파조제를 body feeding 및 precoating하여 점검하였으며 filter cake의 고무로나 국소여과파장 등의 특성변화 및 양에 따라 고정하여 국산구조요소의 효율적인 사용방법 및 적정침가량 등을 규명하고자 한다.

2. 실험

2-1. 실험장치 및 방법

본 연구의 각 조업조건에 따른 filter cake 내부에서의 공극률(porosity), 국소여과비저항(local specific filtration resistance) 등의 여과특성 및 그 변화방향을 측정하기 위한 실험장치 및 방법은 이미 발표된 문헌[17]에 차세히 설명되어 있다. 따라서 기본실험장치 사양은 참고문헌 설명에 의존한다. 본 실험에서 새로이 사용된 precoating층의 형성실험장치 및 방법은 Fig. 1과 같다. Fig. 1에서 보는 바와 같이 내경이 7cm이고 두께가 3mm인 알루미늄 flange를 설치하여 구성된 실린더에 임질크기의 구조요소파조제를 4-6wt% 첨가한 슬러리를 연속적으로 공급하면서 함용수를 사용하여 실린더에 주입하였으며, 실린더 하단부의 screen을 거쳐나온 슬러리를 슬러리 tank에서 재교반하여 실린더로 순환시키며 precoating층을 형성시켰다. 이때 screen은 Dialite #200, #250, #300의 경우 80, 100, 150mesh를 사용하였으며 screen 위에 precoating층이 짜는 임자로 점차적으로 형성되도록 sprayer 및 slurry distributor를 사용하여 슬러리를 고정하게 분산시켰으며 슬러리의 순환수도(단위시간 및 단위면적당 슬러리의 screen 통과량)을 조절하였다.

이렇게 하여 얻어진 precoating thin layer는 높이에 따라 각각 아크릴판 flange를 하나씩 제거하면서 sampling하여 건조시킨 후 여과조제의 size distribution을 각 sample마다 Coulter Counter(Model-TA II)를 사용하여 측정하였다. 형성된 precoating thin layer는 Fig. 2에서 보는 바와 같이 생상된 precoating층의 일부분으로 양을 측정한 뒤 자료의 size가 크므로 filter cake의 일부분이 위쪽으로 가도록 사진을 찍어 양측-폭사장치 위에 부착하여 cake filtration 실험을 수행하였다. 그리고 실험에 사용된 슬러리는 탄산 꽃 İz, Talc(I) 및 Talc(II)의 세 종류 입자를 사용하였으며 입자의 진일도는 각각 2.58, 2.90, 2.84(g/cm³)이며 여과조제로는 진일도가 각각 2.50, 2.31, 2.22, 1.23(g/cm³)인 Dialite #200, Dialite #250, Dialite #300 및 Coperlite의 4종류의 제품(한국구조공업주식회사, 경주)을 사용하였다. 구조요소파조제의 특성은 분자기 일도가 0.15(g/cm³)으로 매우 작어서 물에 혼합하면 오랫동안 부유한다.

3. 결과 및 고찰

Cake filtration에서 filter cake에 가해지는 압력

Fig. 2. Size distribution of filter aid in precoating layer.

□ HI △ MID ○ UND

HWAAHAK KONGHAK Vol. 27, No. 4, August 1989
에 따른 filter cake의 공극률(ε) 및 국소여과비저항 값(α)의 변하는 cake filtration의 특성을 해석하는 데 중요한 정보가 된다. Filter cake의 공극률과 국소
여과비저항은 각각 식 (1)과 (2)에 의해 구할 수 있
다.

\[
\varepsilon = \frac{A_s L - W / \rho_s}{A_s L} = 1 - \frac{W}{A_s \rho_s L}
\]

\[
\alpha = \frac{A_s \mu \lambda g A \theta}{A_s \mu W \ln \frac{h_1 - h_2}{h_2 - h_s}}
\]

이에 관한 이론적인 고찰은 이미 발표된 문헌[17]에 자세히 설명되어 있다.

3-1. 여과조제 Body Feeding 시의 영향

압축-투과 실험에서 피스톤에 가해지는 압력 P와 filter
cake에 가해지는 압력 Ps의 변화에 따라 각각 평균압력에 도달되었을 때의 filter cake의 공극률은
식 (1)에 의해 구할 수 있으며, 이로 Talc(II)의 고농
도 (30 wt%) 슬러리에 여과조제로 Dialite #300을
body feeding 한 것에 대하여 Fig. 3에 나타내었다.

Fig. 3에서 볼 수 있듯이 filter cake의 공극률은 압
력 P, Ps의 증가에 따라 log-log 그래프에서 선형적으
로 감소하였고 여과조제를 첨가하지 않은 경우보다 여
과조제를 첨가한 경우가 공극률이 증가하였다. 이와 같
은 여과조제의 첨가에 의한 공극률의 증기는 여과조제
내부의 pore 때문인 것으로 판단된다[3, 18, 21].

![Fig. 3. Effects of filter aid body feeding on porosi-
ty in cake filtration (Slurry:Talc(II), Filter Aid: Dialite #300).](image)

동일 여과조제에서 슬러리 중류에 따른 공극률의 변
화를 Fig. 4에 나타내었다.

Fig. 5의 경우와 같이압력 P, Ps가 증가함에 따라
공극률이 감소하는 경향을 나타내고 있다. 그러나 고체
입자의 밀도가 작고 거동이 큰 탄산칼슘 슬러리의 경우
가 Talc(I), Talc(II) 슬러리보다 압력에 대한 공극
률의 감소가격이 비교적 완만하게 나타났다[3].

![Fig. 4. Porosity dependence on the kind of slurry
in cake filtration (Filter Aid: Dialite#300, Filter Aid Amount: 4 wt %) (Body Feeding).](image)

![Fig. 5. Effects of filter aid body feeding on α in
cake filtration (Slurry:CaCo3, Filter Aid: Dialite#300).](image)
암축-투과실험에서 형성된 filter cake에 대한 두수 실험의 결과로부터 식 (2)에 의해서 국소여과비저항을 구할 수 있으며, 이를 압력 P, P에 대하여 Fig. 5와 6에 도시하였다. Fig. 5에서 보는 바와 같이 압력 P, P에 대해 국소여과비저항(α)은 log-log 그래프에서 선형적으로 증가한다. 여과조제를 첨가한 경우 증가하지 않은 경우보다 국소여과비저항 값이 현저하게 감소하였는데, 특히 여과조제의 첨가량이 1wt%인 경우 현저하게 감소하였다. 이는 슬러리에 다공성입자인 여과조제를 첨가하여 만들어진 filter cake의 평균 공극률이 다공성입자를 첨가하지 않은 경우의 filter cake의 공극률보다 증가함으로써 filter cake 내부를 통과하는 물의 흐름에 대한 저항이 감소하였기 때문이라고 볼 수 있다.

Talc(II) 슬러리에서 여과조제의 종류에 따른 비저항에 대한 영향을 Fig. 6에 나타내었다.

Fig. 6의 경우도 역시 Fig. 5에서와 같이 압력 P, P가 증가함에 따라 국소여과비저항도 증가하였다. 또한 밀도가 작은 Coperlite의 경우 비저항의 증가 기울기가 가장 빠르게 감소하였다.

Fig. 3, 4, 5 및 6에서 나타난 경향은 기존의 연구결과[17]와 잘 일치하고 있다.

Fig. 7은 정량하여 여과조제 첨가량에 따른 공극률의 변화를 도식하였다. 여과조제의 첨가량이 증가함에 따른 공극률이 증가하다가 4wt% 이상에서는 공극률이 감소하는 것으로 나타났다. 규조트 첨가량이 4wt% 이상에서 공극률이 완만하게나마 감소하는 이유는 bulk density가 큰 규조트의 함량이 증가함수록 filter cake의 bulk density가 공극률의 증가 이상으로 크게 증가하기 때문에 판단된다.

Fig. 8에는 정량하여 여과조제 첨가량에 따른 국소여과비저항 변화를 나타내었다. 규조트 첨가량이 증가함에 따라 국소여과비저항은 감소하다가 역시 4wt% 이상에서는 완만하게 증가하고 있음을 알 수 있다. 따라서 본 실험조건에서의 터널슬러리에 규조트 첨가량이 4wt%까지는 압축성 cake 이론에 잘 부합되고 있으며 실제 압축조건에서 최적투입량을 예측할 수 있는 filter cake의 특성을 잘 보여주고 있다.

규조트 첨가량의 변화에 따른 압축압력을 고려한 값은 최소자승법으로 구하여 여과조제의 첨가량(%)과 압축성(%)에 대하여 다음과 같은 관계식을 얻을 수 있었다.

\[\lambda = 0.0057 \exp(\xi) + 1.129 \]

식 (3)으로부터 규조트 첨가량에 따라 압축성은 지수적으로 감소함을 알 수 있다.
3-2. 여과조제 Precoating 시의 영향

Precoating 층의 형성 실험에서 슬러리의 순환속도 (단위시간 및 단위면적당 슬러리의 precoating screen 통과량)가 빠르면 precoating 층이 불균일하게 형성되어 precoating 층의 높이에 따른 size distribution도 불균일하였다. 군열하게 precoating 층이 형성되고 precoating 층의 높이에 따른 size distribution이 뚜렷하게 나타나도록 하기 위하여 슬러리의 순환속도는 0.2-0.3cm³/sec·cm² 이하가 적당하였다. Dialite # 250의 경우 이와 같이 형성된 precoating 층의 높이에 따른 size distribution을 Fig. 2에 나타내었다. Fig. 2에서 볼 수 있듯이 precoating 층의 일부분으로 갑수록 size가 작고 입자의 분율은 작고 size가 큰 입자의 분율이 큰 것으로 나타났다.

Precoating 층을 사용한 압축-투과시험에서 압력 P, Pₚ에 대한 filter cake의 총의 적극을 산 (1)에 의해 구할 수 있으며, 이 관계는 Fig. 9에 나타나게 됐다. Fig. 9에서 보는 바와 같이 filter cake의 총의 적극은 압력 P, Pₚ의 증가에 따라 log-log 그래프에서 선형적으로 감소하였으며 여과조제를 첨가하지 않은 경우보다 첨 가한 경우가, 그리고 여과조제의 첨가량이 증가함에 따라 총의 적극이 증가하였다. 이와 같이 여과조제를 첨가함에 따라 총의 적극이 증가하는 현상은 body feeding의 경우와 마찬가지로 여과조제 내부의 pore 매분을 것으로 판단된다. Precoating 층을 사용한 압축-투과시험에서 형성된 filter cake에 대한 투과시험의 결과로부터 식 (2)에 의해 국소여과비지향을 구할 수 있으며, 이를 압력 P, Pₚ에 대하여 Fig. 10에 도시하였다. Fig. 10에서 볼 수 있듯이 압력 P, Pₚ에 대하여 국소여과비지향은 log-log 그래프에서 선형적으로 증가하였고 여과조제를 첨가한 경우가 첨가하지 않은 경우보다 국 소여과비지향 값의 현저한 감소를 가져왔으며, 이는 body feeding의 경우와 마찬가지로 슬러리에 다양한 입자인 여과조제를 첨가하여 만들어진 filter cake의 형용 공극물이 다양한 입자를 첨가하지 않은 경우의 filter cake의 공극물보다 증가하여, filter cake 내부를 통과하는 물의 흐름에 대한 저항이 감소하기 때문에 볼 수 있다.

3-3. 여과조제 Body Feeding 시와 여과조제 Precoating 시의 영향 비교

압축-투과시험에서 압력 P, Pₚ과 공극물 및 국소여
4. 결론

이상과 같은 실험결과 다음과 같은 결론을 알 수 있다.

1. 고농도 슬러리의 cake filtration에서 filter cake의 특성은 암력의 증가에 따라 공극들은, 감소하고 국소여과지함이 증가하여 암축성 cake의 이론에 잘 부합하고 있으며 규모로 청알량이 약 4wt%까지는 이 이론에 적합함을 알 수 있다. 규조토여과조제의 청알량 \(\xi \) (wt%)의 변화가 여과조제 혼합 cake의 암축성(\(\lambda \))에 미치는 영향은 다음과 같은 관계식으로 나타낼 수 있다.
\(\lambda = -0.0057 \exp(\varepsilon) + 1.29 \)

규조트 점기량은 5wt% 이상인 여과조제 혼합 케이크 특성은 비교적 비압축적이며 고농도 슬러리 처리에 규조트여과조제의 최적점기량은 약 3wt%임을 알 수 있다.

2. 규조트여과조제를 사용한 precoating thin layer의 형성실험에서는 슬러리의 순환속도(단위시간 및 단 위면적당 슬러리의 precoating screen 동과량)가 높을수록 precoating 층의 높이에 따른 size distribution이 확실하게 나타났으며 또한 precoating thin layer를 사용한 경우의 여과비용은 이 승을 사용하지 않은 경우 보다 작게 나타났으며 두수율도 좋은 것으로 나타났다.

3. Cake filtration에서 여과조제 precoating의 경우가 여과조제 body feeding의 경우보다 공극물이 높고 국소여과비용은 낮아 보다 효율적인 것으로 나타났다.

감 사

본 연구는 한국과학기술연구원 연구비지원으로 수행되었으며 이에 감사드립니다.

NOMENCLATURE

- \(A_1 \): cross-sectional area of permeability gauge [cm²]
- \(A_2 \): cross-sectional area of cylinder [cm²]
- \(g \): gravity acceleration [cm/sec²]
- \(h_0 \): height of water level in cylinder [cm]
- \(h_1 \): height of water level in permeability gauge at the start of permeation [cm]
- \(h_2 \): height of water level in permeability gauge at the end of permeation [cm]
- \(L \): thickness of filter cake [cm]
- \(W \): weight of dry filter cake [g]

Greek Letters

- \(\rho \): density of filtrate [g/cm³]
- \(\rho_s \): true density of solid particles [g/cm³]
- \(\mu \): viscosity of liquid [g/cm·sec]
- \(\sigma \): specific local resistance [cm/g]
- \(\varepsilon \): porosity of filter cake [-]
- \(\theta \): filtration time [sec]
- \(\lambda \): compressibility of filter cake [-]
- \(\xi \): amount of added filter aid [wt%]

REFERENCES