Anodic Oxidation of Iodide-Mediated Sulfur Dioxide Solution

Byung Won Cho, Kyung Suk Yun and In Jae Chung*

Division of Chemical Engineering, Korea Advanced Institute of Science and Technology
*Department of Chemical Engineering, Korea Advanced Institute of Science and Technology
(Received 24 September 1987; accepted 3 December 1987)

요 악

회전원전극 및 회전고리-원전전극측정법으로 요오드이온 매체 아황산가스용액의 양극장화반응에 대한 반응특성 및 반응기구를 연구하였다. 증감생성물인 요오드 및 요오드산이 탈지되었으며, 요오드이온의 전기화학적 반응반응과, 아황산가스와 산화생성물의 화학반응으로 이루어진 촉매반응기구가 규명되었다. 한계전류는 원전전극의 회전속도가 증가함에 따라 요오드의 폐작반응이 빨리 이루어지므로써 증가하였다. 아황산가스의 전기화학적 산화반응은 거의 일어나지 않았다. 요오드이온 매체 아황산가스용액의 전기화학적 반응에서의 수집효율은 요오드이온의 전기화학적 반응에서의 수집효율보다 현저하게 낮게 나타났으며, 전극의 회전속도가 증가함에 따라 증가하였는데, 이로부터 촉매반응기구를 확인할 수 있었다.

Abstract—The method of RDE and RRDE measurements was used to investigate the characteristics and the mechanism of the anodic oxidation of iodide-mediated sulfur dioxide solution. The intermediate products such as iodine and iodate were detected and the catalytic reaction mechanism which was composed of the electrochemical oxidation of iodide and the chemical reaction between sulfur dioxide and oxidized products was disclosed. The limiting current was increased with the increase of rotation speed of disk electrode which brought about the rapid reaction of iodine removal. The electrochemical oxidation of sulfur dioxide did not nearly occur. The collection efficiency in the electrochemical reaction of iodide-mediated sulfur dioxide solution was greatly lower than that in the electrochemical reaction of iodide and increased with the increase of rotation speed of electrode, which confirmed the catalytic reaction mechanism.

1. 서 론

절대하여 소극성효과를 증진시키는 방안이 강구되어 몇몇 연구자들이 이에 대한 연구를 보고하였다[4, 5].

본 저자들은 이를 전위주사법으로 이에 대한 연구를 실시하여 반응특성 및 반응기구를 보고한 바 있다[6]. 여기서 요도이온의 소극성효과는 전극다발 및 전위밀도에 관계하며, 대체로 0.25 V~0.5 V 사이로 나타났다. 반응기구를 살펴보면 낮은 전위(1.0 V vs SCE)에서는 요도이온의 요도르의 전기화학적 산화반응과, 순차적으로 일어나는 요도르와 아황산가스 사이의 화학반응으로 이루어졌다.

\[2I^- + 2e \rightarrow I_2 \]
\[I_2 + SO_3^- + 2H_2O \rightarrow H_2SO_4 + 2I^- + 2H^+ \]

(1)
(2)

다음은 전위[1.0 V vs SCE] 이상에서는 반응기구는 요도르의 요도르산으로의 전기화학적 산화반응과 순차적으로 일어나는 요도르가 아황산가스 사이의 화학반응으로 이루어졌다.

\[I^- + 3H_2O \rightarrow IO_3^- + 6H^+ + 6e \]
\[IO_3^- + 3SO_2^2- + 3H_2O \rightarrow I^- + 3SO_4^{2-} + 6H^+ \]

(3)
(4)

상기의 반응들은 전기화학적 촉매반응의 일종으로, 요도르-아황산가스의 반응에서 화학반응에 의하여 생성되어 다시 요도르산화반응을 하게 되므로 반응에 의하여 소모가 없이 계속 소극성에서전극반응에 참여하게 되며, 다만 아황산가스는 화학적으로 산화된다. 또한 본 저자들은 전위환변화반응시험을 이용하여 본 전기화학적 촉매반응의 촉매전류에 대한 이론 및 특성은 연구 보고하였다[7]. 이와 아황산의 산화반응 중에서의 요도르와 아황산가스 사이의 화학반응에 대한 반응동력학을 연구 보고하였다. 그러나 지금까지의 연구들은 주로 전위주사법 및 전지전화반응시험을 이용한 것으로써, 이들 촉매법의 한계로 인하여 본 반응과 같이 전기화학적 반응이 촉매반응기구로 일어나는 경우 명확한 반응기구 규명 및 중간생물물의 탐지할 수 없는 단점을 나타내고 있다.

본 연구에서는 전극환전극(RE, Rotating Disk Electrode) 및 전극고리-환전극(RRDE, Rotating Ring-Disk Electrode) 측정법을 이용하여, 화학효과 조사 및 중간생물물의 탐지를 실시함으로써 보다 명확한 반응특성 및 반응기구를 연구하였다.

2. 실험

본 연구에 사용한 실험장치의 구성은 Fig. 1과 같으며, 전해지는 일본 Hokudo Denko사의 회전고리-환전극장치(HR-103 A)를 사용하였다. 전원과 고리전극은 모두 정극으로 되어 있으며, 그 기하적 면적은 모두 0.5 cm²로 동일하였다. 전극작용은 나선형 벽을 전극이 사용되었으며, 기준전극으로는 표준기준전극(SCE)이 사용되었는데, 본 실험에서 표시한 전위들은 특별한 언급이 없는 한 기준전극을 기준으로 하여 나타낸 것이다.

전극환전극극작용법의 경우는 미국 PAR사의 Potentiostat(PAR 173)와 Programer(PAR 175)를 사용하여 전극작용의 기준극에 대한 기준을 제시하면서 각각의 전해도에 대하여 X-Y 기록기(PAR 9002 A)로 전위-전류 분극도선을 기록하였다.

전극고리-환전극작용법의 경우는 일본 Hokudo Denko사의 Dual Potentiostat(HR-101 B)를 사용하여 전극작용의 기준극에 대한 전위의 기준을 유지하면서 그에 따른 전위의 전류-전압지식을 얻기 위하여 전류지식기(YEW 3036)로 기록하였다. 본 실험의 목적은 중간생물물의 검출에 있으므로 전극작용의 전위는 중간생물물이 충분히 생성될 수 있는 전위(0.5 V 이상)로 유지하고 고리전극의 전위는 중간생물물을 다시 환전시키기로 전용된 전위인 0 V로 유지하였다.

전극의 전처리는 각 실험을 빠르게 진행하기 위해 다음과 같은 방법으로 실시하였다. 우선 전극 표면을 #600 포고, 5μ미플라인, 1μ미플라인, 0.5μ미플라인 순서로 기계적 연마를 실시하여 4단계와 같이 매끄럽게 한다. 연마된 전극을 전한 절산과 황산의 혼합액에 30초 정도 침적시켜 이물질을 제거하고 중류수로 잘 세척한 후,
경중적으로 전기화학적 전처리를 실시한다. 전기화학적
전처리는 0.5 M 황산용액 중에서 전위구간을 -0.2 V와
1.1 V 사이로 하여 주사속도 1 V/sec로 10분 정도
양극전위를 주기적으로 변환시킴으로써 실시한다. 전위
증기변환시키는 목적은 전류를 실질적으로 전극
표면의 이물질에 의한 표면거칠음을 감소시키기 위한 것이다.
양극액은 0.5 M 황산에 각각 KI+SO₃, SO₂, KI를
용해시키는 용액을 사용하였으며, 응극액으로는 0.5 M
황산을 사용하였다. 전해조는 약 500 ml 용량의 크기
로 양극액은 330 ml, 응극액은 10 ml를 사용하였다.
양극액과 응극액은 초기 frit (Fig. 1의 전해조에서 흘
선으로 표시)로 분리되었다. 양극과 응극간의 거리는
3 cm으로 항상 일정하게 유지하였다. SO₂ 용해는 SO₂
gas (Anhydrous 99.98% min, Matheson)를 0.5
M 황산용액에 기포화 (bubbling)시킴으로써 실시하였으며,
용액내의 SO₂ 농도는 요도적절법에 의하여 결정하였다[8], 모든 실험은 실온 (22±2℃)에서 실시하
였다.

3. 결과 및 고찰

전극반전환극상에서 요도이온 배체 아황산가스용액에
의 양극화반극극극선을 각각의 전극속도에 따라 구한
결과 Fig. 2와 같이 나타났다. 전극속도가 증가함에 따
라 환전전류가 나타나기 시작하는 전위가 높아
지는 양(+)의 방향으로 이동하였고, 한계전류가 나타
나는 전위구간은 감소하였다. 한계전류 크기는 전극속
도가 증가함에 따라 증가하였으나, 전위 1.1 V 이상에
서의 전위감소 현상은 전극속도가 증가함에 따라 현저
하게 나타났다. 이같은 현상은 요도이온 배체 아황산
가스용액의 양극화반환극상에 있어서 요도의 제거공용
[반응식 (2)]의 용해단계라는 것[6, 7]을 다시 한번 확
인시켜 주는 것으로 다음과 같이 설명할 수 있다. 한계
전류가 나타나기 시작하는 전위가 전극속도가 증가함에
따라 양의 방향으로 이동하는 이유는, 전극속도가 증가
함에 따라 전극화학반응에 의하여 전극표면에 생성되는
요도의 제거공용이 점점 이루어지게 되므로 제거공용
속도에 대응할 수 있는 충분한 양의 요도가 생성됨
때까지 전위가 양의 방향으로 이동하게 되기 때문이다.
요도의 생성반응속도가 제거공용속도와 동일하게 되
는 전위부터는 제거공용이 용해단계가 되기 때문에 한
계전류현상이 나타나게 된다.

Fig. 3은 요도이온 배체 아황산가스용액에서 한계
전류와 전극속도의 제공근과의 관계를 나타내는 것으로
한계전류는 전극속도의 제공근에 비례하여 증가하였다.

Fig. 4는 요도이온의 양극화반반응에 있어서 한계
전류와 전극속도의 제공근과의 관계를 나타내는 것으로
한계전류는 전극속도의 제공근에 비례하여 증가하였다.
이는 일반적으로 전기화학반응이 확산지배를 따르는 경
우 한계전류가 전극속도의 제공근에 비례한다는 사실과

![Graph 2](image2.png)

Fig. 2. Effect of rpm on the anodic oxidation rate in 0.5M H₂SO₄+1.0mM KI+50mM SO₂ solution (Pt RDE, 5mV/sec, A: 100 rpm, B: 500rpm, C: 900rpm, D: 1600rpm, E: 2500rpm).

![Graph 3](image3.png)

Fig. 3. The relationship between limiting current density and root of rpm in 0.5M H₂SO₄+1.0mM KI+50mM SO₂ solution (Pt RDE).

HWAAHAK KONGHAK Vol. 26, No. 1, February 1988
일치하는 것으로 [9, 10], 요오드이온의 양극산화반응이 확산저해반응, 즉 다시 말하여 요오드의 제거반응이 응수단계가 되는 것을 나타내 준다. 따라서 Fig. 3에 나타난 현상은 요오드이온 매체 SO₂ 용액에 있어서 요오드의 제거반응, 즉 다시 말하여 요오드와 SO₂ 사이의 화학 반응이 응수단계가 되는 것을 나타내 준다. 그리고로 화학 속도 증가에 따른 한계 전류 증가현상은 한계속도가 증가함에 따라 양극산화반응의 생성물인 요오드의 제거반응이 빠르게 이루어지기 때문으로 사료된다.

Fig. 5는 SO₂ 용액에 대한 양극산화분극곡선 각각의 한계속도에 따라 나타낸 것이다. 한계전류 현상은 나타나지 않았고 다만 최고전류가 한계속도가 증가함에 따라 증가하였으나, 그 증가량은 현저하게 나타나지 않았다. 이 그림과 Fig. 2를 비교하여 보면 알 수 있듯이, 동일한 한계속도에 대하여 요오드이온 매체 SO₂ 용액에서의 한계전류가 훨씬 크게 나타났다. 이는 Matveeva 등[4]이 제시한, 0.4 V 〜 1.0 V (vs Ag/AgCl) 전위에서는 SO₂의 양극산화반응이 대부분 일어나는 제거가 잘못된 제거하는 것인 작용하는 것이다. 만약 이 전위구간에서는 SO₂의 양극산화반응이 일어나면, 요오드이온 매체 SO₂ 용액에서의 한계전류는 SO₂ 용액에서의 한계전류의 1/2로 줄어들 것이다. 일반적으로 평형전위나 다른 화학반응을 포함하고 있는 용액의 분극곡선을 보면, 한 화학반응의 한계전류에 따른 전위가 증가하여 다른 화학반응의 전기화학적 반응이 일어나면 먼저 일어나는 반응의 한계전류에 새로운 반응에 대한 한계전류가 포함되어 한계전류는 증가하여 나타나게 된다. 본 요오드이온 매체 SO₂ 용액의 양극산화반응이 일어날 때, 처음 한계전류에 이르 후 전위가 증가하여 SO₂의 양극산화반응이 일어나는 전위에 이르면 먼저 일어나는 반응의 한계전류에 SO₂의 양극산화반응에 의한 전류가 포함되어 한계전류가 크게 증가하여야 할 것이 다. 그러나 SO₂가 양극산화되는 전위에 이르러도 한계전류가 동일하게 나타나는 것으로 이루어 보이면, 본 요오드이온 매체 SO₂ 용액의 양극산화반응에서는 SO₂ 자체의 양극산화반응이 거의 일어나지 않는다는 것을 알 수 있다. 이는 실제전류변화계정법에서의 실험결과인, SO₂ 자체의 양극산화 반응은 거의 일어나지 않는다는 사실[11]과 일치하는 것이다.

본 요오드이온 매체 SO₂ 용액에서 SO₂가 양극산화되는 전위에 이르러도 SO₂의 양극산화반응이 거의 일어나지 않는 이유는 요오드이온이 SO₂보다 강한 홍차력[4]을 가지고 있어서 전극표면으로의 SO₂ 홍장을 방해하기 때문으로 사료된다. 또 다른 이유로 하나는 반응속도의 관점에서 생각할 수 있는데, 요오드이온의 요오드로의 양극산화반응의 비반응속도상수 (specific reaction rate constant)를 보면, 0.03 cm²/mole·sec[12]로, SO₂ 용액의 양극산화반응의 비반응속도상수인 5 × 10⁻¹² cm²/sec[13]보다 적을 뿐이다. 따라서 요오드이온과 SO₂가 양극에서의 건강 전극표면에 묻혀되어 조화롭게 반응하여 일어나는 바로 보이게 되며, 요오드이온의 반응속도에 비해 매우 작으므로 상대적으로 SO₂의 양극산화반응이 나타나는 전류효과는 거의 없을 것으로 사료된다. 또한 Fig.
Fig. 6. The disk and ring current densities with the rpm of RRDE in 0.5 M H$_2$SO$_4$ + 1.0 mM KI solution ($E_D = 0.7$ V, $E_R = 0$ V).

Fig. 7. The disk and ring current densities with the disk potential in 0.5 M H$_2$SO$_4$ + 1.0 mM KI solution ($E_R = 0$ V, 6400 rpm).

Fig. 8. The disk and ring current densities with the rpm of RRDE in 0.5 M H$_2$SO$_4$ + 1.0 mM KI + 50 mM SO$_2$ solution ($E_D = 0.7$ V, $E_R = 0$ V, $\Delta E_R = 0$ only).

SO$_2$ 용액의 양극산화반응에서의 중간생성물인 요오드 및 요오드산을 회전고리-원판전극측정법으로 탐지할 수 있을 것으로 사료된다. Fig. 8은 원판전극 및 고리전극의 전위에 각각 0.7 V, 0 V로 고정한 후 요오드이온 매체 SO$_2$ 용액에 대하여 실험한 결과로 고리전극의 환원전류가 검출되었다. 특히 원판전극에 전위를 가지지 않고 고리전극의 전위 0 V로 하였을 경우 고리전극의 환원전류(점선으로 표시)는 회전속도에 관계없이 거의 미량이었다.

Fig. 9는 요오드이온이 용해되지 않은 SO$_2$ 용액에 대한 실험결과이다. 원판전극의 산화전류는 회전속도가 증가함에 따라 다소 증가하였다. 고리전극의 환원전류는 회전속도에 관계없이 거의 미량으로 나타났다. 이
Fig. 9. The disk and ring current densities with the rpm of RRDE in 0.5M H₂SO₄ + 50mM SO₂ solution (E₀ = 0.7V, Eₗ = 0V).

Fig. 10. The disk and ring current densities with the disk potential in 0.5M H₂SO₄ + 1.0mM KI + 50mM SO₂ solution (E₀ = 0V, 6400rpm).

Fig. 11. Variations of collection efficiency with the rpm of RRDE in 0.5M H₂SO₄ + 1.0mM KI + 50mM SO₂ solution (E₀ = 0.7V, Eₗ = 0V).
수집효율의 변화를 나타낸 것이다. 수집효율은 요오드 이온의 전기화학적 반응인 경우는 달리 상당히 낮게 나타났으며, 회전속도가 증가함에 따라 증가하였다. 수집효율이 상당히 낮게 나타난 것은 중간생성물인 요오드가 SO₂와 벌리 화학반응을 하므로, 요오드이온의 전기화학적 반응과 비교하여 상대적으로 원판전극의 산화 전류는 증가하고, 이에 반하여 고리전극에 축적되는 요오드는 매우 적게 되어 고리전극의 환전전류가 매우 감소하기 때문인 것으로 사료된다. 일반적으로 전기화학적 반응이 축쇄반응기구의 경우에는 화학반응이 빠르면 빠른수록 중간생성물이 벌리 없어지게 되므로, 고리전극에서 전기화학적 반응을 하는 중간생성물의 양이 감소하게 되어 수집효율은 낮게 되며, 또한 회전속도가 증가함에 따라 고리전극으로의 중간생성물의 확산이 증가하게 되므로 수집효율은 증가하게 된다[9, 10]. 따라서 본 반응기에 있어서 수집효율이 낮게 나타난 원인은 회전속도 증가에 따라 수집효율이 증가하는 현상은 본 전기화학적 반응의 반응기구가 축쇄반응기구로 이루어졌기 때문이다.

4. 결론

본 요오드이온에 의하여 아황산가스용액의 양극산화반응을 회전원판전극 및 회전고리원판전극촉정법으로 연구한 결과 다음과 같은 결론을 얻었다.
1. 중간생성물인 요오드 및 요오드산을 탐지함으로써, 본 반응기의 요오드이온의 요오드 및 요오드산으로의 전기화학적 산화반응은, 순차적으로 일어나는 SO₂와 산화생성물과의 화학반응으로 이루어졌다는 것을 규명할 수 있었다.
2. 전화전류는 원판전극의 회전속도가 증가함에 따라 요오드의 산화반응이 빨리 이루어지므로써 증가하였다.
3. 본 실험조건에서 SO₂의 전기화학적 산화반응은 거의 일어나지 않았다.
4. 본 전기화학적 반응에서의 수집효율은 요오드이온의 전기화학적 반응에서의 수집효율보다 훨씬 낮게 나타났으며, 전극의 회전속도가 증가함에 따라 증가하였단다.

REFERENCES