HY-세울라이트 및 백금담지 HY-세울라이트 촉매에 의한 자일렌의 기상 이성질화반응

이근대*・이호인

서울대학교 공과대학 화학학과
(1987년 4월 16일 접수, 1987년 6월 23일 채택)

Gas-phase Isomerization of Xylene over HY-Zeolite and Pt-Loaded HY-Zeolite

Gun Dae Lee* and Ho-In Lee

Department of Chemical Technology, College of Engineering, Seoul National University, Seoul 151, Korea
(Received 16 April 1987; accepted 23 June 1987)

요 약

HY-세울라이트 및 HY-세울라이트에 백금을 담지시킨 촉매(Pt/ HY)에 의한 자일렌의 기상 이성질화 반응에 있어서의 반응 메커니즘을 연구하였다. 또한 이러한 촉매들에 의한 에틸렌을 포함한 환합자이렌의 이성질화반응에 대한 연구도 수행하였다. HY-세울라이트에 의한 자일렌의 이성질화반응은 분자간 알킬기 전환(intermolecular transalkylation) 메카니즘과 본자내 1,2-에틸기 이동(intramolecular 1,2-methyl shift) 메카니즘에 의해 진행되며, 이러한 각각의 메카니즘의 전체반응에 대한 기여도는 반응조건에 의존함을 알았다. Pt/ HY 촉매에 의한 자일렌의 이성질화반응은 수소첨가된 (hydrogenated) 중간 생성물을 거쳐 진행되며, 비교적 안정한 carbocation을 거쳐 반응이 진행되려는 경향이 있음을 알았다. 그리고 혼합자일렌이 HY-세울라이트에 의해 이성질화되는 과정에 있어서는 에틸렌이자일렌보다 알킬기 전환의 정도가 높을 수 있었다.

Abstract—The mechanism of xylene isomerization over HY-zeolite and Pt-loaded HY-zeolite (Pt/HY) was studied. And the isomerization of mixed xylene containing ethylbenzene over the above catalysts was also investigated. As the results of experiments, vapor-phase isomerization of xylene over HY-zeolite proceeded via intermolecular transalkylation mechanism and intramolecular 1,2-methyl shift mechanism simultaneously, and the contribution of each mechanism to the overall reaction depended on reaction condition. Over Pt/HY, the isomerization of xylene occurred through hydrogenated intermediates and had tendency to proceed via the route involving more stable carbocation preferentially. In the isomerization of mixed xylene over HY-zeolite, the extent of transalkylation of ethylbenzene was higher than that of xylene.

1. 서 론

주기의 자일렌의 이성질화반응은 저온, 액상에서 굴밀하게 반응을 이용하여 연구되었다[1-3]. 그러나 이

*연주소 : 부산대학교 화학공학과
한국인으로서, 이러한 자일렌 이성질화반응에 대한 메커니즘은 여러가지로 제안되고 있다. 그리고 근본적으로 이론자들은 혼합자질들은 에틸렌비이 다양 포함되어 있는 경우가 많다. 그러나 에틸렌비이 포함한 혼합자질적으로부터 각각의 이성질체를 분리시키는 과정은 경사 조사가 필요한 혼합자질들을 동시에 이성질화시키는 과정이 실제 과정에서도 제한되고 있으며, 따라서 이러한 공정의 양에서의 개선을 위해서도 이에 대한 보다 체계적인 연구가 요구되고 있다.

본 연구에서는 고체 산화배중에서도 비교적 산 활성 점(acid site) 농도가 높은 HY-제세라이트를 백지에 이 축대가에서의 자일렌의 기상 이성질화반응에 대한 메커니즘을 연구하였고, 또한 HY-제세라이트에 백금을 담지시킨 촉매를 이용하여 이러한 반응에 대한 2인 기능성(bifunctional) 촉매의 역할을 연구하였다. 그리고 에틸렌비이 포함한 혼합자질들의 이성질화반응에 대한 연구도 수행하였다.

2. 실험

본 실험에 사용한 HY-제세라이트 촉매는 NaY-제세라이트(1/16"pellet, Strem Chemicals, Inc.)로부터 NH₄Cl용액을 이용하여 이온교환시켜 제조하였다. 또한 백금담지촉매(PT/HY)는 염화백금산(H₂PtCl₆·6H₂O)용액을 이용하여 HY-제세라이트에 백금을 0.5wt%되게 담지시켜 제조하였다.

실험방법으로는 예열부(preheating zone)에서 기화시킨 반응물과 수소를 혼합하여 촉매 1g을 충전시킨 반응기(1/4"stainless steel tubing)에 통과시켜 반응을 진행시켰다. 그리고 반응을 시작하기 전에 모든 촉매는 반응관 운도에서 수소를 흘리면서 5시간 동안 격리하였다. 반응물은 1시간 간격으로 채취하며 가스 크로마토그래프(Packard, Model 438)로 분석하였다.

본 실험의 반응조건은 예비실험과 최적조건으로 선택된 반응온도 400℃, H₂/hydrocarbon 물비 4, LWHSV(Liquid Weight Hourly Space Velocity) 1.5 g-feed/ hr, g-cat이었으며 이때 반응압력은 필요에 따라 조절하였다.

3. 결과 및 고찰

3-1. HY-세라이트 촉매상에서의 자일렌의 이성질화반응

산화배에 의한 자일렌 이성질화반응의 메커니즘으로 현재까지 알려져 있는 것으로 대표적인 것으로는 메커니즘 1, 2-메틸기 이동(intramolecular 1, 2-methyl shift) 메커니즘[3, 5]과 분자간 압력기 전환(intermolecular transalkylation) 메커니즘[4] 등이 있다.

본 실험의 결과로 Fig. 1과 2에는, p-자일렌을 HY-제세라이트상에서 이성질화시킬 때 반응압력을 각각 18 kg/cm²와 1 kg/cm²로 하여 반응을 진행시키면서 이들 반응에 있어서의 이성질화와 알킬기 전환에 의한 생성물의 수율 및 이들 수율의 상대적 비의 반응시간에 따른 변화가 나타나 있다. 이에 p-자일렌의 HY-제세라이트 촙매에 의한 반응 생성물은 이성질화반응 생성물인 m-와 p-자일렌, 그리고 알킬기 전환반응 생성물인 trimethylbenzene와 톨루엔으로 대부분 구성되어 있으며, 벤젠이나 tetramethylbenzene는 생성량은 각

![Fig. 1. Yield and ratio of transalkylation to isomerization vs. time-on-stream in the isomerization of o-xylene over HY-zelite under Pₒ=18 kg/cm².](image-url)
히 적었다. 이 때 trimethylbenzene과 톨루엔은 거의 1:1의 비로 생성되었으며 이로부터 이들 화합물들이 알칼리 전환반응에 의한 생성물임을 확인할 수 있었다.

HY-세올라이트 촉매상에서의 m-와 p-자일렌의 반응에 있어서도 o-자일렌의 경우와 유사한 경향을 나타내었다. 즉 3가지 촉매 이성질화 모든 경우에 있어서, 반응시간의 경과에 따라 알칼리 전환반응/이성질화반응의 비가 감소하는 경향을 보였으며, 반응압력이 18 kg/cm²인 경우가 1 kg/cm²인 경우에 비해서 알칼리 전환반응/이성질화반응의 비가 높았다.

반응시간의 경과에 따라 알칼리 전환반응/이성질화 반응의 비가 감소하는 것은, 반응이 진행됨에 따라 알칼리 전환반응 생성물의 양이 비교적 크게 감소하는 반면 이성질화반응 생성물의 양은 큰 감소를 보이지 않기 때문이다. 이러한 현상은 반응이 진행됨에 따라 촉매표면에 어느 정도 탄소질이 형성되어 인접한 두 개의 황화에 반응물의 황화가 어려워지고, 따라서 인접한 두 개의 황화에의 반응물의 황화에 의해서 생성되는 알칼리 전환반응 생성물인 trimethylbenzene과 톨루엔의 생성량은 크게 감소하는 반면에, 이성질화반응 생성물인 자일렌의 생성량은 크게 감소하지 않기 때문으로 생각된다. 즉 본작과 알칼리 전환 메카나즘에 의한 자일렌 이성질화반응의 중간 생성물로 알려진 trimethylbenzene4의 생성량의 변화가 자일렌의 생성량의 변화에 큰 영향을 미치지 않을음을 알 수 있다. 이러한 결과는 HY-세올라이트 촉매상에서의 자일렌의 이성질화반응이, 인접한 두 개의 황화물은 필요로 하는 분자간 알칼리 전환에 의해 진행될 뿐만 아니라, 하나의 황화물에서도 이성질화반응이 가능한 분자내, 1,2-메틸기 이동에 의해서도 진행될을 약한다.

반응압력이 높은 경우에 알칼리 전환반응/이성질화반응의 비가 높은 것은, 높은 압력에 의하여 인접한 두 개의 황화물에 반응물의 황화가 용이해지기 때문으로 생각된다. 즉 반응압력이 낮수록 하나의 황화물에 황화된 반응물이 또 다른 반응물과 알칼리 전환반응을 일으키기 가능성이 낮아지고 그 자체로 분자내 1,2-메틸기가 이동에 의해 이성질화물 가능성이 커지게 되며, 따라서 알칼리 전환반응/이성질화반응의 비는 반응압력이 감소함에 따라 감소하게 된다. 자일렌 이성질화반응에 대하여 이와같은 반응압력의 영향을 보이기 위해 반응초기의 생성물 중에서 이성질화반응 생성물인 두 가지 자일렌 이성질화물의 비를 구하여 나타낸 Table 1을 보면, 반응압력의 차이에 따라 이 비도 전이가 남을 수 있다. o-와 p-자일렌의 이성질화반응에 있어서 본자산 알칼리 전환 메카나즘에 의해 반응이 진행되는 경우는 o-자일렌과 p-자일렌의 상호전환은 가능하다. 반면, 분자내 1,2-메틸기가 이동 메카나즘에 의해 반응이 진행되는 경우는 o-자일렌= m-자일렌= p-자일렌의 경로를 따라 이성질화반응이 진행되게 된다. 전술한 바와 같이, o-와 p-자일렌의 이성질화반응에 있어서 반응압력이 낮수록 분자간 알칼리 전환 메카나즘의 전체 이성질화반응에 대한 기여도가 커지므로, 즉 o-자일렌과 p-자일렌이 m-자일렌을 거치지 않고 절정 상호전환되는 정도가 커지므로 이성질화반응 생성물중에서 m-자일렌이 차지하려는 비중이 줄어들 것으로 예상된다. 그러나 반응압력이 높은 경우가 낮은 경우에 비해 p-자일렌/m-자일렌의 비가 높아지게 된다.

Table 1. Effect of pressure on the isomerization of xylene over HY-zelite.

<table>
<thead>
<tr>
<th>feed</th>
<th>ratio between individual xylene isomer in the product</th>
<th>total working pressure(kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o-xylene</td>
<td>m-xylene</td>
</tr>
<tr>
<td>o-xylene</td>
<td>p-xylene</td>
<td>0.36</td>
</tr>
<tr>
<td>m-xylene</td>
<td>o-xylene</td>
<td>1.11</td>
</tr>
<tr>
<td>p-xylene</td>
<td>o-xylene</td>
<td>0.32</td>
</tr>
</tbody>
</table>

HWAHAK KONGHAK Vol. 25, No. 5, October 1987
또한 m-자일렌의 이성질화반응에 대해 생각해 보면, 이러한 반응이 순수하게 분자내 1,2-메틸기 이동 메카니즘에 의해 진행될 경우 여성분충중에서의 p-자일렌이 o-자일렌보다 많아야 한다는 점과[9], 반면에 이러한 반응이 순수하게 분자간 전환 메카니즘에 의해 진행될 경우 여성분충중에서의 o-자일렌이 p-자일렌보다 많아야 한다는 점[4]를 볼 때, HY-시뮬라
이트 촉매상에서의 m-자일렌의 이성질화반응은, 전술
한 바와 같이 반응압력이 높은 경우에 비해 낮은 경우 가 분자내 1,2-메틸기 이동 메카니즘의 전환 이성질화 반응에 대한 기여도가 커질 것으로 예상되고, 따라서 반응압력의 감소에 따라 여성분충중에서의 o-자일렌/p-
자일렌의 비도 줄어드는 것으로 생각된다.

이상의 결과로부터 HY-시뮬레이션 촉매상에서의 자
일렌의 이성질화반응은 분자내 1,2-메틸기 이동 메카
니즘과 분자간 전환 메카니즘에 의해 진행되며 반응조건에 따라 전체 이성질화반응에 대한 각각의 메카
니즘의 기여도가 차이가 날 수 있다.

3-2. Pt/HY 촉매상에서의 자일렌의 이성질화반응

고체 산촉매상에서의 자일렌의 이성질화반응에 있어
서는 기본적으로 그 사용된 촉매의 성질에 따라 여러가
지 다른 메카니즘을 거쳐 진행된다. 이 중에서도 특히
2일 기능성 촉매인 Pt/HY 촉매상은 일반적인 고
체 산촉매와는 다른 메카니즘을 나타낼 것이 예상된다.
즉 이 경우에 있어서는 수소첨가 반응 중간 생성물과 거쳐 반응이 진행되며[8], 기본적으로 이러한 Pt/HY 촉매
상의 자일렌 이성질화반응도 분자내 반응(intramolecular reaction)일 수 있다.

본 실험에서는 이러한 Pt/HY 촉매상에서의 자일렌
이성질화반응의 메카니즘의 특성을 알아보기 위해 다른
촉매와 그 실험결과를 비교하였다. 먼저 반응경로의 차
이에 따라 그 생성분충의 자일렌 분율의 차이를 잘 나
타낸 m-자일렌을 둘러싸 3가지 다른 촉매상에서 이
성질화반응을 시진 다음, 그 생성분충의 자일렌 이성질
화의 분율을 구하여 Table 2에 나타내었다. 또한 Pt/
HY 촉매상에서의 자일렌의 이성질화반응에 있어서는
C₆H₆의 탄화수소가 비교적 많이 생성되었으며, 이른
한 현상은 반응의 중간 생성물인 수소첨가된 화합물의
크레직에 의해 나타난 것으로 생각되며, 따라서 이러한
반응이 수소첨가된 중간 생성물을 거쳐 진행됨을 간접
적으로 확인할 수 있었다. 여기에서 보면, 실리카-알루미
나(SA)의 경우에 있어서는 생성분충중의 p-자일렌이
o-자일렌보다 그 분율이 높으며, 이러한 것은 실리카-
알루미나 촉매상에서의 자일렌 이성질화반응은 분자내
1,2-메틸기 이동 메카니즘에 의해서만 진행되는 Cortes와 Corma[5]의 실험결과를 간접적으로 첫번째
해 주고 있다. 또한 HY-시뮬레이션(HY)의 경우는
앞서 설명한 분자간 전환 메카니즘의 효과에 의
해 생성분충의 o-자일렌이 p-자일렌보다 그 분율이 높
음을 알 수 있다. 반면에 앞의 2가지 촉매와는 다른 메
카니즘을 나타낼 것으로 예상되는 Pt/HY의 경우에는
여기서, 생성분충의 o-자일렌 분율이 p-자일렌 분율보
다 높은 것은 다음과 같이 설명할 수 있다. Pt의 촉매
특성인 수소첨가-수소제거의 높은 활성으로부터 Pt/
HY 촉매상에서의 자일렌 이성질화반응에 대하여 예상
되는 메카니즘을 도시한 Fig. 3에 보면, m-자일렌이
p-자일렌으로 이성질화되는 과정에서는 2→3→2
carbocation을 거치면서 반응이 진행될 것에 예상되
고, m-자일렌이 o-자일렌으로 되는 과정에서는 2→3
→3′ carbocation을 거치면서 반응이 진행될 것에 예

<table>
<thead>
<tr>
<th>catalyst</th>
<th>xylene distribution in the product(mole%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o-xylene</td>
</tr>
<tr>
<td>SA</td>
<td>15.70</td>
</tr>
<tr>
<td>HA</td>
<td>14.70</td>
</tr>
<tr>
<td>Pt/HY</td>
<td>9.82</td>
</tr>
</tbody>
</table>

Reaction conditions: T=400°C, P=18 kg/cm², H/HC=4, LHSV=1.5 g-feed/hr-g-cat.

Fig. 3. Plausible mechanisms of xylene isomerization over bifunctional catalyst.
상된다. 따라서 m-자일렌으로부터 p-자일렌이 생성되는 경우보다는 상대적으로 안정한 tertiary carboxation을 겔게 생성되는 o-자일렌의 분율이 p-자일렌의 분율보다 다소 높게 나타난 것으로 생각된다.

이상의 결과로부터 Pt/HYS 추체상에서의 자일렌의 이상질화반응은 수소 yatırım 강한 산성용을 가진 o-자일렌=m-자일렌=p-자일렌의 반응경로를 따라 진행되며, 특히 상대적으로 안정한 tertiary carboxation을 겔게 반응경로를 통해 반응이 진행되려는 경향이 뚜렷할 것으로 예상된다.

Table 3. Product distribution from isomerization of mixed xylene over various catalysts.

<table>
<thead>
<tr>
<th></th>
<th>feed (mole%)</th>
<th>HY (mole%)</th>
<th>SA (mole%)</th>
<th>Pt/HYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5</td>
<td>2.63</td>
<td>1.32</td>
<td>41.85</td>
<td></td>
</tr>
<tr>
<td>Bz</td>
<td>16.00</td>
<td>8.82</td>
<td>14.37</td>
<td>7.41</td>
</tr>
<tr>
<td>Tol</td>
<td>13.20</td>
<td>3.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-x</td>
<td>6.38</td>
<td>9.60</td>
<td>2.39</td>
<td></td>
</tr>
<tr>
<td>m-x</td>
<td>36.23</td>
<td>45.71</td>
<td>31.87</td>
<td></td>
</tr>
<tr>
<td>o-x</td>
<td>22.00</td>
<td>14.32</td>
<td>20.54</td>
<td>11.17</td>
</tr>
<tr>
<td>MEB</td>
<td>2.44</td>
<td>0.56</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>TMB</td>
<td>10.55</td>
<td>2.89</td>
<td>3.62</td>
<td></td>
</tr>
<tr>
<td>DEB</td>
<td>1.00</td>
<td>0.34</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>DMEB</td>
<td>4.42</td>
<td>1.05</td>
<td>0.83</td>
<td></td>
</tr>
</tbody>
</table>

- Abbreviation : Bz = Benzene, EBz = Ethylbenzene, x = xylene, MEB = Methylbenzene, TMB = Tri-methylbenzene, DEB = Diethylbenzene, DMEB = Di-methylbenzylbenzene.
- Reaction conditions: See Table 2.

Table 4. C₈ aromatic distribution and selectivity for transalkylation in the product from isomerization of mixed xylene(EBz: o-x : m-x = 16:22:62) over HY-zeolite (HY) and silica-alumina (SA).

<table>
<thead>
<tr>
<th>catalyst</th>
<th>C₈ aromatics (mole%)</th>
<th>% transalkylated ethylbenzene</th>
<th>% transalkylated xylene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ethyl-benzene</td>
<td>o-xylene</td>
<td>m-xylene</td>
</tr>
<tr>
<td>HY</td>
<td>13.41</td>
<td>21.78</td>
<td>55.10</td>
</tr>
<tr>
<td>SA</td>
<td>15.93</td>
<td>22.77</td>
<td>50.67</td>
</tr>
</tbody>
</table>

- Reaction conditions: See Table 2.
Table 4에 나타난 결과를 좀 더 자세히 논의하기 위하여 두 가지 측면에, 즉 HY-세울라이트와 실리카-알루미나상에서 위의 네 가지 알킬기 전환에 관한 상대적인 반응속도상수를 구하였다. 총 반응물과 촉매의 접촉시간을 낮게 조절하여 위에 기술한 네 가지 가능한 알킬기 전환반응의 외부반응 효과를 최소화시킨 후, 알킬기 전환속도를 변화시킨 여러가지 상태에 있어서의 알킬기 전환에 의한 각각의 C_8^+ 생성물의 양과 알킬기 전환속도를 플롯하여[10] Fig. 4를 얻었고, 이 결과에 2차 반응 모형을 적용[11, 12]하여 상대적인 반응속도상수를 구하여 그 결과를 Table 5에 나타내었다. Fig. 4는 HY-세울라이트에 대한 결과이며 실리카-알루미나 상에 대하여도 같은 방법으로 결과를 얻었다. Table 5에서 보듯, 두 가지 측면에서 모든 EE와 EX 반응에 대한 수소수화 반응은 XE와 XX 반응에 대한 수소수화보다 그 값이 높은 것으로부터, 알킬기 전환에서 에틸기가 이동하는 이동이 에틸기가 이동보다 쉬운 양을 알 수 있다. 이는, 에틸기는 이동하는 primary carbocation의 형성을 통하여 이동하지만, 반면에 에틸기의 이동은 이보다 약간한 secondary carbocation의 형성을 통하여 이루어지기 때문이다.

Table 5. Transalkylation kinetics over HY and SA.

<table>
<thead>
<tr>
<th>reaction</th>
<th>relative rate constant<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>HY</td>
<td>SA</td>
</tr>
<tr>
<td>EE</td>
<td>4.41</td>
</tr>
<tr>
<td>EX</td>
<td>1.65</td>
</tr>
<tr>
<td>XE</td>
<td>1.20</td>
</tr>
<tr>
<td>XX</td>
<td>1.00</td>
</tr>
</tbody>
</table>

^a: These data have been normalized to $k_{XX} = 1$ for each catalyst.

4. 결 론

1. HY-세울라이트 측면에 의한 자릴렌의 기상 이성질화반응은 분자간 알킬기 전환 메카니즘과 분자내 2,4-메틸기 이동 메카니즘에 의해 동시에 진행되며, 반응 암력이 감소함수록 분자내 2,4-메틸기 이동 메카니즘의 전체반응에 대한 기여도도 컸다.

2. Pt/HY 측면에 의한 자릴렌의 기상 이성질화반응에 있어서는 상대적으로 약간한 tertiary carbo- cation을 거치는 반응경로를 통해 반응이 진행되는데 경향을 나타내었다.

3. 에틸벤젠을 포함한 혼합자일렌의 기상 이성질화반응에 있어서는 HY-세울라이트 측면에 실리카-알루미나 측면보다는 더욱 더 선택적으로 에틸벤젠을 알킬기 전환시켰다.
REFERENCES