박막형 다공성입자구조 이온교환수지의 제조 및 특성

정종화 · 지용채 · 임선기

한국과학기술원 화학공학과
(1985년 8월 7일 접수, 1985년 10월 18일 채택)

Preparation and Characteristics of the Macrotreticular Ion Exchange Membrane

Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, Seoul 131, Korea
(Received 7 August 1985; accepted 18 October 1985)

요 약

괴상증합법에 의하여 다공성입자구조를 갖는 두께 0.2mm의 poly(styrene-divinyl benzene)막들을 합성하였다. 막의 성분 중 가교제와 기종성성제의 함량이 수지의 표면적과 폐용능력에 미치는 영향을 조사하였다. 기종성성제의 함량이 증가하면 막의 표면적이 폐용능력이 모두 증가하였으나, 가교제의 함량이 증가하면 표면적은 증가하되 폐용능력은 감소하였다. 합성된 막들을 전한 황산과 니트로벤젠을 이용하여 황산화시켰으며 그들의 이온교환용량을 허용범위에 의하여 구하였다. 황산화된 막들의 이온교환용량은 가교제의 함량이 증가하면 감소하고 기종성성제의 함량이 증가하면 따라서 증가하였다.

Abstract—Macrotreticular poly (styrene-divinylbenzene) membranes of 0.2 mm thick have been synthesized by the bulk polymerization. The effects of the contents of the crosslinking agent and the diluent on the surface area and the swelling ability of the membranes were investigated. The swelling ability and the surface area increased with the amount of diluent. With the increase in the amount of crosslinking agent, the surface area increased while the swelling ability decreased. The membranes were sulfonated with concentrated sulfuric acid in the presence of nitrobenzene and the ion-exchange capacities of the membranes were measured by titration. The ion-exchange capacities increased with the increase in the diluent content but decreased with the increase in the crosslinking agent.

1. 서 론

이온교환수지는 고분자로 이루어진 메트릭스에 함성기가화학적으로 결합되어 있는 물질을 말한다. 가정 논리 사용되고 있는 이온교환수지로서는 poly-styrene 체인의 divinylbenzene에 의하여 가교된 중합체에 함성기가 결합된 양이온교환수지를 들 수 있다. 이러한 이온교환수지는 치환되는 이온의 종류에 따라 양이온교환수지와 음이온교환수지를 분류되며, 구조적 특성에 따라 겔 형수지와 다공성입자구조수지로 구분된다[1]. 겔 형수지는 고분자가 일체적으로 연속적인 균일상을 이루고 있으.
며, 다공성업자구조 수치는 Fig. 1에서 볼 수 있는 바와 같이 미세한 펌 엽합과 그들 사이의 거세공 (macropore) [2]로 이루어져 있다.

본 연구에서는 종래의4와 다른 과장중합법에 의하여 보다 얇은 다공성업자구조 수지막을 형성하였다. 또한 이들 이용하여 다공성업자구조를 갖는 poly(styrene-divinylbenzene) 수지막의 성분성중 가교체인 divinylbenzene과 기공함성체인 t-amylalcohol의 함량이 이 막의 평활성, 표면적 및 환산화 되었을 때의 이온교환용량에 미치는 영향을 조사하였다. 형성된 막의 구조는 주사식 전자현미경 (International Scientific Instruments, ISI-DS-130 Scanning Electron Microscope)으로 관찰하였다. 이렇게 만들어진 다공성업자구조막은 분리용 복합 막의 저기층으로 쓰일 수 있을 뿐만 아니라 정밀형 의 외형을 갖는 모노수지막으로 사용될 수 있다 [5].

2. 실험

성분에 사용된 styrene (Aldrich Chem. Co. Inc. 99%)와 divinylbenzene (Tokyo Kasei, 55% m-and p-isomer)은 0.1N NaOH 수용액으로 세척하여 사용하였다. 기공함성체로는 t-amylalcohol (Tokyo Kasei, 99%)과 poly butadiene (Aldrich Chem. Co. Inc. 45% Vinyl, 55% cis-and trans-1, 4, avg. Mn 4,500)을 사용하였고, 중합계제로는 benzoyl peroxide (Hayashi Pure Chem.)을 사용하였다. Table 1에 성분의 조성에 포함하는 방법을 수록하였다.

2-1. 다공성업자구조 수지막의 제조

각 단량체들을 원하는 조성대로 혼합하여 잘 쉬이도록 한 다음 Fig. 2 와 같은 성형장치의 한쪽 유리판 위에 조심스럽게 부착하였다. 혼합된 액의 청진성을 강화하기 위하여 두께 0.15mm의 polypropylene 방자를 첨가하였으며 막의 두께를 일정하게 유지하기 위하여 두께 0.2mm의 테프론 sheet를 사용하였다. 단량체의 혼합액이 부드럽게 된 뒤에 다른 한 장의 유리판을 조심스럽게 덮은 후 클램프를 이용하여 두 장의 유리판을 단단히 조어서 양은 수조에 넣었다. 중합반응이 진행됨에 따라 일어나는
Table 1. Definitions of compositions and their ranges.

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt% Cross linking</td>
<td>Weight of divinylbenzene(DVB) × 100</td>
<td>20, 25, 30, 35 Wt %</td>
</tr>
<tr>
<td>(Wt% X-link)</td>
<td>Weight of [stere + ethylstyrene + DVB]</td>
<td></td>
</tr>
<tr>
<td>Solvent ratio</td>
<td>Vol. of t-amylalcohol</td>
<td>0.25, 0.5, 0.75, 1.0</td>
</tr>
<tr>
<td>(SR)</td>
<td>Vol. of total monomers<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Polybutadiene ratio</td>
<td>Wt of polybutadiene / Wt of total monomers</td>
<td>0.218</td>
</tr>
<tr>
<td>(PR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzoylperoxide Wt %</td>
<td>Wt of B.P.O. × 100</td>
<td>0.2 Wt %</td>
</tr>
<tr>
<td>(B.P.O.Wt %)</td>
<td>Wt of total monomers</td>
<td></td>
</tr>
</tbody>
</table>

^a Total monomers; stere + ethylstyrene + DVB + polybutadiene

수지의 수축의 영향을 줄이기 위하여 유리판을 세워 놓았으며 수조의 온도를 처음 72시간 동안은 50℃로 그 후 72시간 동안은 85℃로 유지하였다. 할성된 양은 증류수와 동물액으로 세척하고 80℃, 10⁻¹ torr에서 48시간 동안 진공건조하였다.

2-2. 표면적

78°C에서의 점소의 화학 - 테이프 실험결과로부터 건조한 상대의 막의 표면적을 측정하였다. 사용된 BET 장치는 Ace glass社 제품을 조립한 것이다.

2-3. 평균도

건조한 상대의 막의 무게를 측정한 다음 25℃로 유지되는 nitrobenzene (Hayashi Pure Chemical Industry Ltd., 99%)에 24시간 동안 담가두었다. 채운된 상대의 막을 깨내어 표면에 묻은 nitrobenzene 을 세거한 후 무게를 측정하였다.

2-4. 황산화

Nitrobenzene에 의하여 폐온된 액을 85℃로 유지되는 진한 황산 (Junsei Chemical Co. Ltd., 95%)에 담가 72시간 동안 반응시켰다. 황산화된 막을 포함하고 있는 용액을 증류수로 시시히 희석시켰다. 24시간 후 용액의 황산농도가 10% 정도에 이르렀을 때 막을 깨내어 메탄올과 증류수로 세척하였다. 수지에 화학적으로 결합되지 않고 세공에 전류하는 황산을 제거하기 위하여 세척한 용액의 pH가 증류수의 pH와 같아질 때까지 반복 세척하였다. 결합된 막을 깨내는 방법으로 함성, 황산화시킨 후 황산화된 막의 적외선 흡수 스펙트럼을 비교하여 수지의 번진리과 황산기와의 화학적 결합을 확인하였다.

2-5. 이온교환 용량

황산화된 막을 세척, 건공건조 하여 무게를 측정하고, 이를 상온에서 10% NaCl 수용액에 담가 교반시키면서 이온교환 시켰다. 이온교환된 용액을 0.1N NaOH로 적정하여 사용한 수지의 무게와 NaOH의 농도 및 양으로부터 이온교환 용량을 구하였다. 이 방법으로 Amberlyst-15의 이온교환 용량을 구한 결과와 NaCl 수용액을 물로 주변시 수지에 담아온 용액을 NaOH로 적정한 결과는 모두 Rohm and Haas사에서 발표한 이온교환 용량과 거의 일치하였다.

Fig. 2. Apparatus for membrane synthesis.
3. 결과 및 검토

3-1. 다공성입자구조 수지막

현재까지 제조된 거의 대부분의 다공성 입자구조 수지는 현탁층합법에 의하여 제조되었다[4]. 이렇게 제조된 수지는 구형을 이루고 있다. Swatling등[4]이 제시한 외상층합 방법으로 제조된 다공성입자구조의 polystyrene막의 표면에는 섬한 동날 모양의 주름(crenelation)이 있었다[4]. 본 연구에서 사용한 외상층합 방법으로 제조한 막에는 이러한 주름이 없기 때문에 Fig. 3에서 볼 수 있는 것 같이 두께 0.2mm 정도의 얇고 균일한 막을 제조할 수 있었다. 제조된 막은 원색을 띄고 있었으며 불투명하였다.

막의 내부구조는 Fig. 4에서 볼 수 있듯이 다공성의 구조를 이루고 있었다. 미세한 젤 입자들이 동쳐져 있었으며 그 사이에 격자망들이 형성되어 있었다. Fig. 4의 (a)와 (b)를 비교해 보면 가교도가 높고 기공형성제의 함량이 높은수록 이러한 입자들의 크기가 작아지고 그들 사이의 격자공의 크기도 작아질을 알 수 있다.

Fig. 3. Cross-sectional view of the membrane (×65).

Fig. 4. Inner-structures of the macroreticular membranes (a) 20 wt% DVB, SR = 0.25 (×4,060) (b) 30 wt% DVB, SR = 0.5 (×10,200).

3-2. 표면적

B.E.T 방법에 의하여 측정된 막의 표면적이 가교도와 기공형성제의 함량에 따라 변화하는 관계를 Fig. 5에 도시하였다. 합성된 막들의 표면적은 50 ～160m²/g이었으며 같은 가교도를 갖는 막들에서 기공형성제의 종 단량체들의 함에 대한 부피비(용매비, SR)가 커짐수록 표면적은 증가하였다. 같은 용매비를 갖는 막들의 가교도가 증가하여도 표면적은 증가하였다. 이는 앞의 Fig. 4의 (a), (b)에서 볼 수 있듯이 가교도와 용매비가 증가함에 따라 입자들의 용질체의 크기가 줄어들고 그 사이의 격자공의 크기도 줄어들었기 때문이라고 설명할 수
Fig. 5. Effect of the amount of the crosslinking agent and the diluent on the surface area of the membrane.

Fig. 6. Effect of the amount of the crosslinking agent and the diluent on the swelling ability of the membrane.

팽윤도는 수지의 표면적과 더불어 홍수화된 수지의 이온교환 용량에 중요한 영향을 미친다. 일반적으로 쌍유 수지의 경우에는 가교도가 낮은수록 팽윤이 잘 일어나는 것으로 알려져 있다[9]. Fig. 6에서도 이와 같은 경향을 볼 수 있다. 반면 같은 가교도를 갖는 수지에서 용매비(SR)가 증가함에 팽윤도가 증가하는 것으로 나타나는데 이는 가공형성제의 양이 많아짐에 따라 수지 내부에 세공이 많이 형성되고 여기에 포함되는 나트로벤젠의 양이 증가하기 때문인 것으로 해석할 수 있다.

3-3. 팽윤도

Polystyrene 수지는 소수성이므로 순수활산에 의하여서는 홍수화가 잘 일어나지 않는다[8]. 따라서 미리 팽윤된 상태에서 홍수을 도입하는데 이때의

Fig. 7. IR absorption spectrum of (a) unsulfonated and (b) sulfonated membrane.

(Perkin-Elmer 399B IR SPECTROPHOTOMETER)
3-4. 이온교환 수지

환산화된 수지에서 환산가와 비닐림 사이에 화학 결합이 이루어져 있는가를 확인하기 위하여 셀링 수지막을 제조하여 격외산 흡수 스펙트럼의 변화를 조사하였다. Fig. 7에서 (a)는 환산화되기 전의 흡수 스펙트럼이며 (b)는 환산화된 수지의 흡수 스펙트럼이다. 두 경우 모두 벤젠고리와 CH2=에 의한 흡수 피크들은 보이지 않고 있다. 환산화됨에 따라 새로 나타난 1040 cm⁻¹과 1120 cm⁻¹ 부근의 피크는 모두 벤젠중에 -SO3H가 붙어서 나타내는 피크이었다(10).

환산화된 막의 내부 구조는 Fig. 8에서 볼 수 있듯이 환산화되기 전과 마찬가지로 다공성 입자구조를 이루고 있었다.

환산화된 다공성 입자구조 수지의 이온교환용량은 그 층벽에 따라 달라진다(11). 그러나 기본 고분자의 성분 조성과 환산화된 수지의 이온교환용량간의 관계는 잘 알려져 있지 않다. Fig. 9에 환산화된 막의 이온교환용량이 기본수지의 가교도 및 용매비에 따라 변환하는 관계를 도시하였다. 같은 조건으로 환산화를 시켰더라도 그 조성에 따라 이온교환용량이 2.4~4.7 (miliequivalent H+g dry resin)으로 달라지는 것으로 나타났다.

같은 가교도에서는 용매비가 증가할수록 이온교환용량이 증가하였다. 이는 같은 가교도에서 용매비가 증가할수록 수지의 표면적이 넓어질 뿐만 아니라 팽용도도 증가하기 때문에(Fig. 5, 6) 같은 시 간내에 보다 많은 환산가가 수지내부의 벤질림에 도달하여 반응할 수 있기 때문으로 설명할 수 있다. 반면 용매비가 일정한 경우에 가교도가 증가하면 이온교환용량은 감소하였다. 이는 앞의 결과에서 가교도가 증가하면 막의 표면적은 증가하더라도 팽용도는 감소한다는 사실에 비추어 볼 때, 팽용도의 감소가 환산가의 수지 내부로의 첨투를 억제하여 이온교환용량의 감소를 초래하였기 때문이라고 해석할 수 있다.

결 루

1. 피복층합 방법에 의하여 다공성 입자구조를 갖는 두께 0.2 mm의 poly(styrene-divinylbenzene)막을 합성할 수 있었다.

2. 합성된 막의 내부 표면적은 가교도와 용매비가 커짐수록 증가하였으며, 용매비와 가교도의 증가가 표면적의 증가에 미치는 영향은 현저한 차이를 보이지 않으며 합성된 수지의 경우와 유사하였다.

3. 가교도의 증가는 표면적을 넓히는 역할을 하지만 팽용능력을 감소시키기 때문에 결과적으로 같은 조건에서 환산화된 막의 이온교환용량은 감소하였다.
REFERENCES