Isomerization of n-Butenes over Heteropoly Acid Compounds

Hong Gon Kim, Jae Jin Kim, Wha Young Lee and Jai-Sung Lee
Department of Chemical Engineering, College of Engineering,
Seoul National University, Seoul 150, Korea
(Received; July 31, 1982)

ABSTRACT

Heteropoly acids and their related compounds function not only as acidic solid catalysts with redox characteristics, but also as catalysts selective to the oxidation reaction like the formation of methacrylic acid from methacrolein. For the investigation of their catalytic characteristics, the isomerization of n-butene was studied using the catalysts of 12-molybdo phosphoric acid and its several metal salts. The catalytic activities of heteropoly acid were increased with the injected water vapor, and metal salts prepared with partial exchange of hydrogen ions gave much higher activities.
1. 結 論

해태로블리산은 2種 以上の 다른 酸素가 酸素原子を 共有して 生成される 結合酸으로서, 近年は アフリカ産 リング 畜産物の Ammoniation 用 触媒の開発で 以後 強化 酸素を 含む 触媒化 用 触媒として 活用されている。特異 12-폴리브로산 酸と 그의 金屬塩은 메타크르네이트로부터 메타 크릴산의 製造과 같은 低級 水素과 塩酸カリド 등의 酸化反応에서 特出す 触媒活性を 나타내고 있다。特異 強化 固酸酸化法では 同時 酸化 一価元の 二元の 機能を 特化させる 特性を 具有し, これらの 原子との 酸素塩を 多様하게 反応させる 特性を持ち, これらの 特性を 表現させ 活用可能である これらの 物質を 金屬塩으로 塩酸カリド が 11 12 と MIX する 質量 酸性範囲の PH 下에서 導入하여 製造하였다. その 金屬塩은 基本的 酸素 金屬塩 に 質量 酸性範囲の PH 下에서 導入하여 製造하였다. これは Tsigdi の 触媒反応 用 表面 金屬塩 との 結合の 火に 依存하여 置換する 金屬の 火酸塩 と 金屬塩 に対して 構造を 添加させる 質量 酸性範囲の PH 下에서 導入하여 製造하였다. これは触媒反応 用 表面 金屬塩 との 質量 火化触媒 に 依存하여 火酸塩 と 金屬塩 に対して 構造を 添加させる 方式은 Table I 의 같다.

2. 實 驗

2.1. 触媒의 製造

本 實験에 사용된 해태로블리산 触媒의 基本 物質인 12-폴리브로산 燃焼 (12-Molybdophosphoric Acid, H2PMO12O40·4H2O)은 無水폴리브로산 (MoO3)과 85% 燃焼 酸水에 P:Mo = 1:12 가 되게 섞여 質量면의 酸性範圍의 PH 下에서 加熱하여 製造하였으며, 그의 金屬塩은 基本的 酸素 金屬塩 に 質量 酸性範圍の PH 下에서 導入하여 製造하였다. これは Tsigdi 노의 触媒反応 用 表面 金屬塩 と 金屬塩 に対して 構造を 添加하는 質量 酸性範圍의 PH 下에서 導入하여 製造하였다. 이는 Tsigdi 노의 触媒反応 用 表面 金屬塩 と 金屬塩 に対して 構造를 添加하는 質量 酸性範圍의 PH 下에서 導入하여 製造하였다. 此의 触媒反応 用 表面 金屬塩 と 金屬塩 に対して 構造를 添加하는 質量 酸性範圍의 PH 下에서 導入하여 製造하였다. 此의 触媒反応 用 表面 金屬塩 と 金屬塩 に対して 構造를 添加하는 触媒製造方法은 Table I 의 같다.

2.2. 触媒의 結晶構造 分析

触媒의 結晶 水 및 触媒構造의 確認을 爲하여 熱分析과 X-線回折分析을 行行った. また, 2.3. 触媒 反応 用 表面 金屬塩 と 金屬塩 に対して 構造を 添加하는 触媒製造方法의 質量 酸性範圍의 PH 下에서 導入하여 製造한 触媒의 結晶 水 및 触媒構造의 確認을 爲하여 熱分析과 X-線回折分析을 行行った. また, 2.3. 触媒 反応 用 表面 金屬塩 と 金屬塩 に対して 構造を 添加하는 触媒製造方法의 質量 酸性範圍의 PH 下에서 導入하여 製造한 触媒의 結晶 水 및 触媒構造의 確認을 爲하여 熱分析과 X-線回折分析을 行行った.
Table 1. Preparation of Heteropoly 12-Molybdophosphates

<table>
<thead>
<tr>
<th>Salts</th>
<th>H₃PMO₁₀₂O₄₀ used</th>
<th>Metal Salts used</th>
<th>Color</th>
<th>Specific Surface Area m²/g-catal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li₃P</td>
<td>II</td>
<td>Li₂CO₃</td>
<td>0.2217</td>
<td>dark Gr.</td>
</tr>
<tr>
<td>Na₃P</td>
<td>II</td>
<td>Na₂CO₃</td>
<td>0.3180</td>
<td>dark Gr.</td>
</tr>
<tr>
<td>Cs₂P</td>
<td>I</td>
<td>Cs NO₃</td>
<td>0.5847</td>
<td>Wh. Yl.</td>
</tr>
<tr>
<td>Cs₂HP</td>
<td>I</td>
<td>Cs NO₃</td>
<td>0.3898</td>
<td>Yl.</td>
</tr>
<tr>
<td>Cs₂H₂P</td>
<td>I</td>
<td>Cs NO₃</td>
<td>0.1949</td>
<td>Yl.</td>
</tr>
<tr>
<td>Mg₃P₂</td>
<td>I</td>
<td>Mg(NO₃)₂6H₂O</td>
<td>0.3846</td>
<td>Yl.</td>
</tr>
<tr>
<td>Ca₃P₂</td>
<td>II</td>
<td>Ca CO₃</td>
<td>0.5003</td>
<td>Wh. Gr.</td>
</tr>
<tr>
<td>Sr₃P₂</td>
<td>III</td>
<td>Sr(NO₃)₂</td>
<td>0.6349</td>
<td>Or.</td>
</tr>
<tr>
<td>Ba₃P₂</td>
<td>II</td>
<td>Ba CO₃</td>
<td>0.5921</td>
<td>Gr.</td>
</tr>
<tr>
<td>Al P</td>
<td>I</td>
<td>Al(NO₃)₁₉H₂O</td>
<td>0.3751</td>
<td>Yl.</td>
</tr>
<tr>
<td>Bi P</td>
<td>III</td>
<td>Bi(NO₃)₅H₂O</td>
<td>0.9702</td>
<td>Or.</td>
</tr>
<tr>
<td>Cr P</td>
<td>III</td>
<td>Cr(NO₃)₅H₂O</td>
<td>0.8093</td>
<td>dark Gr.</td>
</tr>
<tr>
<td>Mn₃P</td>
<td>I</td>
<td>MnCO₃</td>
<td>0.1724</td>
<td>Yl.</td>
</tr>
<tr>
<td>Fe P</td>
<td>I</td>
<td>Fe(NO₃)₉H₂O</td>
<td>0.4942</td>
<td>Yl.</td>
</tr>
<tr>
<td>Fe₂H₃P₃</td>
<td>I</td>
<td>Fe(NO₃)₉H₂O</td>
<td>0.3693</td>
<td>Yl.</td>
</tr>
<tr>
<td>Fe H₂P₃</td>
<td>I</td>
<td>Fe(NO₃)₉H₂O</td>
<td>0.1347</td>
<td>Yl.</td>
</tr>
<tr>
<td>Co₃P₂</td>
<td>I</td>
<td>Co(NO₃)₂6H₂O</td>
<td>0.4366</td>
<td>Rd. Yl.</td>
</tr>
<tr>
<td>Nb₂P₂</td>
<td>II</td>
<td>Ni(NO₃)₂6H₂O</td>
<td>0.4362</td>
<td>bright Yl. Gr.</td>
</tr>
<tr>
<td>Ni₂H₃P₂</td>
<td>II</td>
<td>Ni(NO₃)₉H₂O</td>
<td>0.2908</td>
<td>bright Yl. Gr.</td>
</tr>
<tr>
<td>Ni₃H₃P₂</td>
<td>II</td>
<td>Ni(NO₃)₆H₂O</td>
<td>0.1454</td>
<td>bright Yl. Gr.</td>
</tr>
<tr>
<td>Cu₂P₂</td>
<td>I</td>
<td>Cu(NO₃)₂3H₂O</td>
<td>0.5624</td>
<td>Yl. Gr.</td>
</tr>
<tr>
<td>Cu₂H₃P₂</td>
<td>I</td>
<td>Cu(NO₃)₂3H₂O</td>
<td>0.2416</td>
<td>Yl. Gr.</td>
</tr>
<tr>
<td>CuH₂P₂</td>
<td>I</td>
<td>Cu(NO₃)₂3H₂O</td>
<td>0.1238</td>
<td>bright Yl. Gr.</td>
</tr>
<tr>
<td>ZnP₂</td>
<td>I</td>
<td>Zn CO₃</td>
<td>0.1881</td>
<td>dark Gr.</td>
</tr>
<tr>
<td>Cd₃P₂</td>
<td>I</td>
<td>Cd(NO₃)₂4H₂O</td>
<td>0.4627</td>
<td>Yl.</td>
</tr>
<tr>
<td>K₃P*</td>
<td>II</td>
<td>K₂CO₃</td>
<td>0.4146</td>
<td>Yl.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H₃PMO₁₀₂O₄₀ xH₂O</th>
<th>S.A. m²/g-catal.</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>I x = 19.3</td>
<td>2.1732</td>
<td>Gr. green</td>
</tr>
<tr>
<td>II x = 23.8</td>
<td>2.2542</td>
<td>Rd. red</td>
</tr>
<tr>
<td>III x = 16.6</td>
<td>2.1228</td>
<td>Wh. white</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yl. yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Or. orange</td>
</tr>
</tbody>
</table>

* K₃P was not produced as Keggin Model.

** 'P' in 12-Molybdophosphates represents the abbreviated form of (PMO₁₀₂O₄₀)

저의 置換比를 減少시킬에 따라 減次 基本酸의 結果의 類似해짐을 確認하였다.

触媒の 結晶構造を 確認為に 為하여 質譜の 関する 触媒粉末を X-線回折分析한 结果 7〜10 度の 低回
折角 部分에 特有의 強한 回折線이 나타났으며, 特히 2θ = 8°에 最大試料의 回折線이 나타났으
으로 Keggin 構造의 特性値과 一致함을 確認
하였다. Fig. 1 은 각 触媒들의 X-線回折分析

HWAHAK KONGHAK Vol. 20, No. 4, August 1982
Table 2. Thermal Behavior of Heteropoly 12-Molybdophosphates

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Hydration Number (X/mole)</th>
<th>Dehydration Temperature (°C)</th>
<th>Decomposition Temperature (°C) Exo.</th>
<th>Endo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂(PMo₁₂O₄₀)</td>
<td>20.8</td>
<td>80 136 432</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>Li₃P</td>
<td>27.2</td>
<td>75 136 361</td>
<td>361 536</td>
<td></td>
</tr>
<tr>
<td>Na₃P</td>
<td>17.4</td>
<td>66 80 128 199</td>
<td>331 402 505</td>
<td></td>
</tr>
<tr>
<td>Cs₃P</td>
<td>7.9</td>
<td>74</td>
<td>>650</td>
<td></td>
</tr>
<tr>
<td>Cs₂HP</td>
<td>10.1</td>
<td>66</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>CsH₂P</td>
<td>19.2</td>
<td>75 94</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>Mg₃P₂</td>
<td>48.4</td>
<td>79 204</td>
<td>457 605</td>
<td></td>
</tr>
<tr>
<td>Ca₃P₂</td>
<td>36.9</td>
<td>66 114 147 223</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>Sr₃P₂</td>
<td>57.7</td>
<td>81 195 421</td>
<td>421 650 662</td>
<td></td>
</tr>
<tr>
<td>Ba₃P₂</td>
<td>42.3</td>
<td>91 333</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>Al P</td>
<td>42.0</td>
<td>94 163 175</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>Bi P</td>
<td>21.0</td>
<td>72 125 197 401</td>
<td>401 508</td>
<td></td>
</tr>
<tr>
<td>Cr P</td>
<td>33.9</td>
<td>93 170 209</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>Mn₃P</td>
<td>35.9</td>
<td>83 163 218 422</td>
<td>452 577</td>
<td></td>
</tr>
<tr>
<td>Fe P</td>
<td>20.6</td>
<td>80 113</td>
<td>425 445</td>
<td></td>
</tr>
<tr>
<td>Fe₃H₄P₃</td>
<td>12.9</td>
<td>80 120</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>FeH₂P₃</td>
<td>76.8</td>
<td>66 121</td>
<td>429</td>
<td></td>
</tr>
<tr>
<td>Co₃P₂</td>
<td>67.0</td>
<td>80 158 216 402</td>
<td>402 458</td>
<td></td>
</tr>
<tr>
<td>Ni₃P₂</td>
<td>43.5</td>
<td>68 113 280 420</td>
<td>484</td>
<td></td>
</tr>
<tr>
<td>Ni₃H₄P₃</td>
<td>27.0</td>
<td>83 248 431</td>
<td>477</td>
<td></td>
</tr>
<tr>
<td>Ni H₄P₂</td>
<td>49.9</td>
<td>71 233 318 436</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>Cu₃P₂</td>
<td>58.4</td>
<td>55 193 410</td>
<td>410 440</td>
<td></td>
</tr>
<tr>
<td>Cu₃H₄P₂</td>
<td>21.5</td>
<td>66 85 130</td>
<td>359 422</td>
<td></td>
</tr>
<tr>
<td>Cu H₄P₂</td>
<td>33.6</td>
<td>89 102 146</td>
<td>447 447</td>
<td></td>
</tr>
<tr>
<td>Zn₃P₂</td>
<td>37.7</td>
<td>83 177</td>
<td>341 448</td>
<td></td>
</tr>
<tr>
<td>Cd₃P₂</td>
<td>55.3</td>
<td>95 249 380</td>
<td>439 577</td>
<td></td>
</tr>
</tbody>
</table>

*°' P' in 12-Molybdophosphates represents the abbreviated form of (PMO₁₂O₄₀)

(陰極; Cu = Kα) 結果中에서 12-모리보드嶙酸 과 Fe 이온으로 희석한 용액에 소량을 적절한 조건을 재현한 것이다。

2.3. 実験装置及び方法

觸媒物の活性比較及び反応特性を調査するにあたり、実験装置の基盤として、反応容器を用意しなければならず、酸素ガス等の実験条件の設定を行った。温度・圧力に対する変動を測定するため、Fig. 2 に示す。触媒物の内部抵抗を測定するときには、100〜200meshの微細な粉末を冷凍乾燥後、無水エタノールを用いて、触媒表面に均一に塗布し、温度を一定に保つための恒温装置を用いる。触媒物を反応容器に導入した後、触媒表面に反応物を導入する。反応物を導入することにより、触媒表面に酸化水素を導入する。
2.4. 반응물 및 생성물의 분석

가스분석은 정량 분석을 위하여 가스크로마토그래프로 사용하였으며, 계층에 Sebaconitrile은 Chromosorb P에 무게비 25\%로, Benzyl Cyanide와 AgNO₃를 무게비 2:1에서 배합한 후, 무게비 36\%에서 Shimalite에 계층하여 분리함을 사용하였다. 전자는 1-\text{-trans}-2, cis-2-butene의 순서로 butene의 분리가 가능하나 isobutylene이 1-butene 과 결합으로 단독의 사용이 어렵다. 후자는 trans-2-butene, isobutylene, 1-\text{-cis}-2-butene의 순서로, 분리가 가능하나, 1-\text{-cis}-2-butene 사이의 분리가 불가능하여 반응에서 isobutylene의 생성에 대한 회전을 사용하였다. 실험의 방법에서는 1-\text{-trans}-2, cis-2-butene 이외의 물질들, 즉 isobutylene, butane 등이 생성되지 않았음을 확인하였으며, 결과는 Sebaconitrile 컬럼에 이용하여 분석하였다.

Fig. 1. X-Ray Diffraction Patterns of 12-Molybdophosphoric Acids and 12-Molybdophosphates

Fig. 2. Flow Diagram for Isomerization with Micro-pulse-reactor

Fig. 3. Effect of the Preheating Temperature on the Catalytic Activity and Selectivity for 1-Butene Isomerization
Catalyst: H₃PMo₁₁O₃₉
Space Velocity: 2100ml/hr/gr-cat.
3. 結果 및 檢討

3.1. 觸媒의 活性變化

3.1.1. 前處理溫度의 影響

12-聚リブノース 魚 魚 觸媒의 特性을 調查하기 爲

하여 前處理溫度에 變化시킨로서 1-butene 을

異性化反應시킨 結果를 Fig. 3에 圖示하였다. 前

處理溫度가 150°C 일 境遇에 가장 높은 轉換率

을 보였으며, 그 以上の 高溫에서 前處理할수록

漸次 轉換率이 減少하는데, 이 結果는 Misono 等

의 前處理溫度變化에 따른 12-聚リブノース魚 觸

媒表面積의 增減曲線과 很少 類似하다. 因為觸

媒 単位表面積當 反應活性度는 前處理溫度

變化에 無關하게 一定한 것으로 解析되어, 이는 単

位表面積當의 酸度(Acidity)가 前處理溫度變化

에 無關하게 一定한을 보여준다.

Fig. 4, 5는 觸媒을 200°C와 250°C에서

各各 前處理한 後, 反應溫度를 變化시킨로서 1-

butene 轉換率의 變化를 調査한 것이다. Fig. 3

의 結果와 같아, 200°C에서 前處理한 境遇가

250°C에서 前處理한 境遇보다 모든 反應溫度

範圍에서 높은 活性을 나타낸다는一般的인 結

果를 確認할 수 있었다. 另外 境遇은 反應溫度

가 前處理溫度보다 50°C 높은 溫度까지 1-

butene, 轉換率이 增加한다는 共通點을 보여

주고 있다. 此 結果는 觸媒을 前處理溫度보다 높

은 反應溫度로 呼吸시키는 過程을 따라 觸媒 내

로의 結晶水가 段階의으로 脫水되어 觸媒表面에 存

在함으로써 表面의 活度를 高하게 만들기 因此으로

解析되며, Fig. 4의 境遇 300°C 以上の 高

溫에서 反應시키면 後저 轉換率이 減少하고 있

는데 이은 前處理 以後 呼吸시키는 溫度變化

程度에 따라 脫水되는데 結晶水의 量이 反應途에

影響을 주며, 另外 觸媒表面積의 減少에 따라 活
나이테로콜리산 분해도의 각 방향으로 합성되고 n-Butene의 음성화 반응

3.1.2. 水분 및 酢素의 影響

n-butene의 음성화 반응에는 水분이 直接関與하지 않기 때문에, 水분의 存在無과 蒽媒의 活性에 미치는 影響을 쉽게 알 수 있으므로, 同一한 前處理溶液와 反應溶液에서 蒽媒表面에 水分을 吸着시킨 價遇와 吸着되지 않은 價遇의 反應性을 比較하였다. Fig. 6에서 보듯이 一般的으로 水분이 添加되면 反應성이 增加하였다. 特히 250℃以上의 高溫에서 水分添加에 依領 反應性이 相當히 向上됨으로써, 水分이 添加되지 않았을 때의 250℃以上 高溫에서의 反應性 減少原因은 高溫에서 前處理함에 따른 蒽媒表面 上 結晶水의 不足 때문이라고 解析한다.

水分을 添加한 價遇와 添加하지 않은 價遇의 蒽媒의 活性持續度를 比較하여 Table. 3에 나타내었다. 各 溫度에 對해 每回 請求로 注入된 1-butene의 舊換率을 注入順序에 따라 初期舊換率로 나누어 比較한 것으로서, 水分이 添加되면 蒽媒의 活性持續度가 向上됨을 알 수 있다.

Table 3. Effect of H2O Injection on the Decrease of Catalytic Activity of H3PMo12O40
(second or third pulse reaction activity per first pulse reaction activity)

<table>
<thead>
<tr>
<th>Preheating & Reaction Temperature</th>
<th>without H2O Injection</th>
<th>with H2O Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>100℃</td>
<td>1.0 (9.4)</td>
<td>1.0 (15.8)</td>
</tr>
<tr>
<td></td>
<td>0.99 (9.3)</td>
<td>0.83 (13.1)</td>
</tr>
<tr>
<td></td>
<td>0.46 (4.3)</td>
<td>0.58 (9.2)</td>
</tr>
<tr>
<td>150℃</td>
<td>1.0 (42.6)</td>
<td>1.0 (46.2)</td>
</tr>
<tr>
<td></td>
<td>0.55 (23.4)</td>
<td>0.90 (41.6)</td>
</tr>
<tr>
<td></td>
<td>0.49 (20.9)</td>
<td>0.73 (33.7)</td>
</tr>
<tr>
<td>200℃</td>
<td>1.0 (52.1)</td>
<td>1.0 (54.0)</td>
</tr>
<tr>
<td></td>
<td>0.81 (42.2)</td>
<td>0.92 (43.7)</td>
</tr>
<tr>
<td></td>
<td>0.77 (40.1)</td>
<td>0.81 (43.7)</td>
</tr>
<tr>
<td>250℃</td>
<td>1.0 (48.1)</td>
<td>1.0 (57.2)</td>
</tr>
<tr>
<td></td>
<td>0.52 (25.0)</td>
<td>0.92 (52.6)</td>
</tr>
<tr>
<td></td>
<td>0.50 (24.1)</td>
<td>0.84 (48.0)</td>
</tr>
<tr>
<td>300℃</td>
<td>1.0 (43.7)</td>
<td>1.0 (49.7)</td>
</tr>
<tr>
<td></td>
<td>0.89 (35.0)</td>
<td>0.89 (44.2)</td>
</tr>
</tbody>
</table>

*Conversion of 1-Butene in mol per cent are given in the Parenthesis.

Fig. 6. Effect with Injection of H2O (○, △) and without it (●, ▲) on the Isomerization of Butenes
Catalyst: H3PMo12O40
Space velocity : 2,100ml/hr/gr-cat.

Fig. 7. Effect of Preheating Temperature of 5℃ lower than Reaction Temperature on the Isomerization of 1-Butene
Catalyst: H3PMo12O40
Space velocity : 2,100ml/hr/gr-cat.

HWAIHAK KONGHAK Vol. 20, No. 4, August 1982
同一한 관계에 대해 반응온도보다 50℃ 낮은
온도에서 관계를 관리한 반응와 반응온도에서
前處理된 반응의 1-butene의 轉換率을 比較하
여 Fig. 7에 图示하였다. 50℃ 낮은 温度에서
前處理된 半反, 200℃ 以上の 反應溫度에서는
更 높은 活性을 보이지만 150℃ 以下에서는 오
려 낮은 活性을 나타내고 있다. 分子を 添加
함에 따라 反應性이 增加한다는 結果와 關聯되
켜볼 때, 이것은 温度增加에 따라 反応系内の
結晶系が 段階的으로 脱水並びに 有着事實을 確
認하게 주었다. 즉 150℃ 以下の 境遇에는 前處
理後 50℃ 增加된 温度에서 脫水並びに結晶系の
量より 反應性を 增加시킬 수 있는 水 以上으로 表
面上に 存在함으로서 오려 反應性을 減少시키
지만, 200℃ 以上の 境遇에는 熱分析 結果로서
보았듯이 分水の 水分当が 減次的に 表面に 나
타날으로써 反應性を 増加시키고 있는 것을
 알 수 있다.

1-butene 1,500ml/hr/gr-cat의 空間速度
로 接觸시킬 때, 液相 1.6μl의 水分을 毎回 注
入後 反応系の境遇에, 酸素 30cc 를 毎回 注入

화학공학 제20권 제4호 1982년 8월
3.3. 觸媒의 활성 비교

金屬이온과 12- 몰리브도膦酸 中의 水素이온을
置換하여 製造한 金屬鰂 觸媒들의 n-butene 異
性化反応의 活性을 比較하기 爲하여 反応温度
150℃에서 2cc의 1-butene 을 철소로 注入하였으
다. Fig. 9 는 金屬이온으로 12- 몰리브도膦酸
触媒内の 水素이온을 모두 置換하여 製造한 触媒
의 反応活性을 比較한 것이며, Fig. 10 은 水
素이온을 一部만 置換하여 製造한 金屬鰂 触媒
의 反応活性을 比較한 것이다. Cs, Na 등의 IA
族 알칼리金屬鰂과 Al 鹂 등이 높은 活性을 보
이는 反面, II A族와 轉移金屬鰂 등은 大概로 低
活性을 보이며, 大概 Fe 鹂이 比較的 높은 活
性을 나타냈다. 이들을 利用하여 触媒의 單位表
面積當 1-butene 의 轉換率과 trans/cis 比와의
関係を Fig. 11 和 12 에 圖示하였다. 一般的
으로 1-butene 의 轉換率を 眞無する 触媒は 높

3.2. 觸媒反應機構

12- 몰리브도膦酸 魚鰂과 酸素 分隔気에서 加熱
하면 酸綠色의 固體가 紅色으로 變하며, 此
에 水素을 通過서와 겹은 綠色으로 變함을 볼
수 있었다. 触媒을 酸素으로 酸化시키면 Mo의 酸
化數가 Mo^{6+}에서 Mo^{4+}로 增加하며, 水素로서
還元시키면 逆으로 Mo^{4+}에서 Mo^{6+}로 酸化数의
減少가 일어난다. 따라서 Mo^{6+} 狀態을 많이 包
含하는 触媒는 綠色을 보며, Mo^{4+} 狀態의 触媒
는 紅色을 띄울 수 있다. 12- 몰리브도膦酸
触媒上에 水分을 添加시키면 反応性이 向上되며
酸素を 供給하면 反応性が 減少한다는 結果로
의 酸綠色을 띄 12- 몰리브도膦酸 触媒가 紅色을
_ber觸媒보다 높은 反応活性을 갖는다는 結果로
부터 n-butene 异性化反応에 關與する 触媒는
主로 Mo^{4+} 狀態라고 解析되며, 此を Misono^{69}
等이 提議한 優セロポリフェ酸 化合物の 酸化還元
機構과 聯關시켜 다음과 같은 反応機構을 세울
 수 있었다. 此で 触媒が 青色을 띄는 反応
活性은 없었으며, 此 狀態는 触媒構造의 變形溫
度(300~500℃) 以内에서는 可逆的인 것으로 알
려져 있다. 51

Fig. 9. Catalytic Activity Change of 12-Molybdophosphates (a)
H₂ : H₂(PMo₁₀O₄₊ₓOₓ)
M : Mⁿ⁺ₓ/ₘ (PMO₁₀O₄ₓ)
Preheating and Reaction Temperature : 150℃
Space Velocity : 2.100ml/hr./gr-cat.

WHAAHAK KONGHAK Vol. 20, No. 4, August 1982
Fig. 10. Catalytic Activity Changes of 12-Molybdophosphates (b)
M(2) : FeHgP3, CuHgP3, NiHgP3, CsHgP3
M(1) : FeHgP3, CuHgP3, NiHgP3, CaHgP3
Preheating and Reaction Temperature : 153°C
Space velocity : 2.100 ml/hr./gr-cat.

은 trans/cis 비율 갖는 것으로 나타났는데, 이 것은 1-butene의 비성화 반응의 cis-2-butene 을 거쳐 열力学적으므로 더욱 안정된 trans-2-butene로 전환될 것을 나타낸다. Fig. 12에서 보면, 12-올리브로이드산은 캐세이온의 수용이온을 일부로 치환하며, 종속이온의 특성과 화합물의 전이와의 재합의 영향에 따라, 수용이온은 전체 종속이온으로 치환한 경로보다 높은 활성을 나타내었다. 이 결과를 두 개의 산이온의 재합이온 (H+, Proton)이 존재한다는 적절한 방법을 통해 분명하게 보여, 12-올리브로이드산의 화합물에서의 n-butene의 비성화 반응은 Brønsted acid site에 존재하고 있으므로 확인할 수 있었다. Ca와 같은 화합이온이 낮은 IA族 금속이온과 Mn gibi의 금속이온이 혼합된 캐세이온과 동일한 화합물이 소결하여 복합된 것이 수용이온의 종속과의 전이가 적절한 해페로코리산이 화합물의 수용이온을 재결합한 활성과 관계말: 유용한 화학물질이 개발될 수 있으므로 본다.

4. 结算

1. 12-올리브로이드산 화학물질에서 1-butene의 비성화 반응은 일반적으로 대응한 화합물을 반응할 경우 150°C 이상이었으며, 화합물의 전이가 반응하려는 화합물의 형태에 따른 화합물의 분산 형태가 낮은 화합물의 화합물 형태의 증류선과 비교

Fig. 11. Catalytic Activities and Selectivities of 12-Molybdophosphates for 1-Butene isomerization

Fig. 12. Catalytic Activities and Selectivities of 12-Molybdophosphates
우 類似하였다。

2. 触媒의 活性 및 活性持續度는 適定量의 水
分을 添加시킴에 增加하였으며, 酸素로 酸化시
키면 減少하였다. 水分은 触媒表面의 脱水에 依
한 低活性 狀態を 防止하여, Br"nsted acid site
을 活性化시켜 주는 것으로 解析되었다. 触媒內
의 Mo 이遷元된 綠色狀態(Mo^2+)가 酸化된 黃色
狀態(Mo^6+)보다 低은 活性을 나타냈다.

3. 12-모리보도誇酸 触媒內에 存在하는 水素
イオン을 完全히 金屬イオン으로 置換한 金屬誇は 基
本誇触媒보다 低は 活性を 나아진 反面, 水素
イオンを 一部に 置換한 金屬誇は 向上된 活性을
 나타념으로써, 12-モリボド誇酸系 触媒의 酸度
는 單位結晶構造外の H^+イオン에 依한 Br"nsted
acid site에 起因する 것으로 解析되었다.

1. 大竹正之，小野田武，触媒, 18, 169(1976).
4. M. Misono, Y. Konishi, M. Furuta and
Y. Yoneda, Japan Chemistry Letters, 709
(1978).
5. W.Y. Lee, M. Misono, K. Sakata, and
Y. Yoneda, the 7th International Congress
on Catalysis, B27, Tokyo (1980).
6. 金在振，工學博士學位論文，서울大學校 大
Chem., 71(4), 1,014(1967).
10. P.J. Lucchesi, D.L. Baeder and J.P. Long-
well, J. Amer. Chem. Soc., 81, 3,235
(1959).
11. W.W. McCarthy and T. Turkevich, J.
12. G.B. Kistiakowsky and W.R. Smith, J.
13. N.S. Raghavan and L.K. Doraiswamy, J.
63, 520(1980).