Controlled Release Fertilizer

Sang Heup Moon and Sung Sup Suh*

Korea Institute of Science and Technology

요 약

비료의 낭비를 방지하고 작물에 대한 효능을 향상시키기 위하여 개발된 지속성비료에 대하여 그 필요성과 제조방법 등을 설명하고 실제로 상업화가 이루어진 Ureaform, MagAmP, SCU 등의 제품을 소개하였으며 이들의 경제성을 검토하였다. 또한 앞으로의 연구과제를 설명함으로써 이 분야에서의 연구방향을 제시하였다.

ABSTRACT

Controlled-release fertilizers are developed to prevent wasteful use of fertilizers as well as to supply proper amounts of fertilizer ingredients to crops. In this paper, necessity and techniques of controlled-release fertilizers are discussed, a few commercial products are introduced, and their economic aspects are considered. Several areas of future investigations are also indicated.

1. 지속성비료의 필요성

Wöhler의 요소합성에서에 계속하여 발전된 대규모의 비료화학공업에 힘입어 세계의 농작물 생산은 크게 증가되었다. 우리나라도 1961년에는 농작물의 요소 생산능력 85000 톤 뿐이던 것이 1980년에는 요소, 양안, 인산, 복비 등을 합하여 총생산능력이 290여만 톤에 이르게 되었으며 이에 따라 농작물의 생산량도 점차 증가

* 표면화학연구실
* Surface Chemistry Laboratory
되었다. 특히 한국식량의 대중을 이루는 수도작
의 경우에는 귀한 품종계량, 농약 및 비료의 보
급, 영농의 기회와, 관계시설의 증대 등에 힘입
어 인근의 아시아국가들에 비하여 단위면적당의
수확량이 가장 높은 기록을 보이고 있다. (한국:
678 kg/10 a, 일본: 616 kg/10 a, 러시아: 2
763 kg/10 a, 필리핀: 195.9 kg/10 a). 1) 그러
나 이러한 식량증산에도 불구하고 과거 10년간
(1969~1978) 한국의 총일구는 17.4%가 증가한
데 비하여 동기간 식량생산의 증가는 14.5%로
서 2) 아직도 식량생산이 인구공급을 따르지 못하
고 있는 실정이다. 농사나 건지 증대할 산업발
전에 따른 경제지의 감소, 영농인구의 유출, 농
약의 과도한 사용에 따른 공해문제, 관계시설의 한
계정들에 과도한 에게 있어서도 식량의 결점현
상은 계속될 것이며 식량위기의 목도일이 불가
피할 것으로 예상된다.
한편 이너지적격의 상황에 따라 비료의 가격
도 점차 높아져서 1969~1978년 사이에는 5배 이
상의 상승을 보였다. 3) 최근에 들어 이러한 비료
를 곤란 경제지에 효율적으로 사용하고 있는
것이가 하는데에 많은 의문이 제기되었으며 실
제의 연구결과에 의하면 상당량의 비효율적으로
낭비되고 있는 것으로 나타났다. 즉 Allison 4)에
의하면 비료비를 국지의 경우 시험량의 50%~60%만이
작물에 의하여 흡수되며, 인간과 카리비로는 5
25%, 40%~70%가 각각 흡수되는 것으로 나타
났다. 이하같이 시험비의 비료의 상당량이 유실되
는 현상은 특히 탕량의 농용을 사용하는 수도작이
나 도우(多雨)지방에서 심각하게, 또 다른 실험
5)를 보면 40 인치의 귀수조전에서 용수의
채액에 요소를 사용했을 경우 시험량의 6%만이
흡수되는 것으로 나타났다. 비료유실의 주 원인
은 시험비의 비료가 수일내에 물에 완전히 흡수되
고 용해된 비료는 작물에 의하여 흡수되기 전에
다시 분해, 증발되거나 (요소의 Ammonia
Volatilization) 또는 도양의 산성으로 배출되며
(Leaching) 농사나 수도작의 경우에 비가 오면
논에서 논들 흡수하거나 바다로 유실되기 때
문이다. 다시 말하면 시험비가 물에 너무
많이 흡수되기 때문에 작물에 의한 흡수이건에
유실되고 마는 것이다. 이와같은 비료의 유실은
비료가 물에 용해되는 속도를 조절함으로써 방
지, 또는 감소시킬 수가 있다.
비료의 유실 이외에도 재래식 비료는 시비 직
후에는 작물이 필요로 하는 양보다도 지나치게
 많은 비료농도를 토양에 공급하게 되고 시간의
경과에 따라 농도가 급격히 감소하여 상당량의
기 간작에는 작물의 필요한농도를 공급하지 못하게 되
며 이러한 비료의 과도 및 결점현상(Fig. 1 참
조)은 결국 작물의 성장과 수확량에 영향을 미
치게 된다. 실제로 수도작에 비하여 재래식 요
소비료를 4~5회 분할비하여 하는 경우와 같은 양
의 지속성 비료를 일회시비하는 경우의 비교 실험
결과를 보면 지속성비료(SCU)를 사용하는 경우
에 비의 수확량이 10%이상 증가되는 것으로 나
타났다. 6) 이와같이 지속성 비료는 비료생분의
효율적인 공급으로 인하여 작물수확량의 증가를
준다는 것장에도 재래비료의 4~5회 분할비
시비에 비하여 일회시비도 충분하기 때문에 비
료의 비비에 필요한 노동력을 절감할 수 있다는
점이 있다. 참고로 우리나라의 수도생산비중
농노작 경비는 50% 이상을 차지한다. 7) 또한 비
료의 유실로 인한 환경의 오염방지, 배수가
인한 소실(渉損) 토양이나 하천에서의 시비, 빈
반한 시비가 불가능한 산림용 및 간척지의 비
료로서 지속성비료는 그 용도가 크다고 보았다.

2. 지속성비료의 제조방법
재래식비료의 비효율성은 주로 시비된 비료가
물에 급격히 용해되는데에 기인하며 따라서 지속성비료의 제조 방법은 비료의 물에 대한 용해 속도를 조절함으로서 작물이 필요로 하는 양을 적시에 공급하도록 하는 것이다. 이 경우로 조절 방출법(Controlled-Release Technology)은 비료 이외에도 의약, 농약, 항균, 항암, 효소 등의 정밀화학제품에 대하여 최근에 널리 응용되고 있는 기술로서 많은 총합물질들이 있다. 비료의 경우에는 N, P, K의 세 가지 주요성분중 주로 N 성분에 대한 조절방법이 많이 연구되고 있는 데 이것은 P, K 등은 적절한 시기에 집중적으로 작물에 공급되어야 하는 성분인데 반해 N은 작물의 성장기간중 계속적으로 공급하여야 하기 때문이다. 특히 비료가 의약이나 효소들에 비하여 가격이 저렴한 제품이기 때문에 비교적 낮은 가격으로 지속성비료를 제조하는 문제가 중요하다. 장량성 비료의 제조방법은 크게 화학적 방법과 물리적인 방법으로 나눌 수 있는데, 전자는 비료를 탈착한 물질로 재료를 공급하여, 후자는 비료를 적당한 물질로 적부 또는 용착시키어서 물속에서 비료가 퍼져 나가면서 지속성비료를 방출하는 방식으로 격장시킨 후 이것이 물속에서 서서히 용해 또는 분해 되면서 지속공급을 방출하는 방식으로 여기서 용착제방법의 경우는 용해도, 분해속도 등이 문제가 되며, 후자는 비료를 적당한 물질로 적부 또는 용착시키아서 물속에서 비료가 퍼져 나가면서 비료가 퍼지는 방식으로 용착된 제조방법을 통한 비료성분의 확산속도, 탈착속도 등이 문제가 된다. 우선 지속성비료의 몇 가지 형태를 소개하고 보다 구체적인 제조내용은 다음 장에서 언급하기로 한다.

2-1. 화학적 방법

1) 유기질과의 결합

요소의 2량체(Diuret)와 3량체(Triuret) 또는 요소와 결합한 유기질과의 결합물질은 물에 낮은 용해도를 가지며 토양중 미생물이나 화학반응(Depolymerization, Hydrolysis 등)에 의하여 점차 분해되므로 요소를 방출하게 된다. 특히 요소와 알데히드(Aldehyde)와의 결합 물질은 사용하는 알데히드의 종류에 따라 다양 한 용해도를 갖도록 할 수 있는 음성질이 있어서 지속성비료로 많이 연구되고 있는 제품이며 Ureaform(UF), Crotonylidenetriurea(CDU), Isotubylidenetriurea(IBDU) 등이 여기에 속한다. 알데히드로 이외에도 시안산(Hydrogen Cyanide), 시안산알데히드(Calcium Carbide), 알데히드(Calcium Carbide), 응모니아, Glyoxal 등과의 결합물질들이 있다.

2) 무기질과의 결합

일반적으로 MNH₄PO₄·xAH₂O나 MKPO₄·xAH₂O (여기서 M은 Cu, Co, Fe, Mg, Mn, Zn 등의 2가금속)로 표시되는 인산염은 물속에서 낮은 용해도(0.01% 이하)를 가지고 용해도 성분은 직접 작물에 퍼져내비료의 역할을 한다. 이 중에서 마그네슘의 인산염은 가장 많은 연구가 진행된 지속성비료로서 미국의 Grace Co.에 의하여 발대용비료로 개발되었다. 그러나 이 방법의 비료는 제조공정이 까다롭고 비료성분의 함량이 적으며 용수속도의 다양한 조절이 곤란한다는 점으로 인하여 크게 실용화가 되지 않은 상태이다. 또 비교적 단기간에 동급이 요구되는 P성분을 지속공급으로 퍼져내비료의 필요가 있는 가에도 문제가 있다고 보겼다. 한편 마그네슘 인산염을 사용하여 요소를 지속함으로서 지속성 소함비료를 제조하는 방법도 제시되었다. 9)

2-2. 물리적 방법

1) 피복에 의한 방법

비료의 피복방법으로 가장 간단한 것은 비료를 포리에이leting등의 작은 포리에 담고 백봉을 한 후 포리에 넣은 구멍을 네 놓음으로써 포리에에서 용해된 비료가 구멍을 통하여 서서히 방출 되도록 하는 방법이다. 10) 그러나 이러한 방식은 방출되는 비료가 토양중에 놓일때는 분산되지 못하고 국지적인 농도분포를 보이는 경향을 갖는다. 따라서 자가의 비료입자를 적당한 물질로 되돌리면이 가까운 방법이 연구되어 왔다. 우선 피복물질로는 가공이 절대로 그리고 마감성질이 좋은 토양에 작물에 무해한 것을 선정하는 것이 중요하다. 또한 피복하고자 하는 비료입자(특히 요소)의 표면이 분산하기 때문에 이러한 조건의 서도 적은 양으로 피복이 감지는 것이 필요한다. 지금까지 제시된 피복물질로서 유량, 화소,
가종 고분자물질의 연장이다. 이를 복합방법으로 각각 분리에 의한 물리방법과 표면반응(Surface Polymerization 등)에 의한 화학방법의 두가지가 있다.

2) 흡착 및 혼합에 의한 방법

비료용 Zeolite, Vermiculite, Perlite와 같이 갈고 다공성 무기질의 흡착시키거나\(^{11,12,13}\) 필프, 우수수속 등의 세루로즈와 함께 시키는 방법\(^{15}\)도 시도되었다. 또 약간의 아스팔트등의 물에 앉힌 물질에 비료를 혼합시킴으로써 비료 성분이 혼합매체네에서의 침전에 의하여 서서히 방출되도록 하는 방법도 있다.\(^{13}\) 이를 방법은 캐럴이나 값싼 물질들을 이용할 수가 있어서 제품의 가격이 낮은 반면 제품중 비료의 함량이 적고 방출속도가 적절한 조건이 허용되며 비료사용 후에 불필요한 물질이 토양에 누적되는 문제도 있다. 지역 또는 토양조건에 따라 소규모의 환경보호에 이용할 수 있으나 대규모의 상용화는 힘들 것으로 전망된다.

3. 지속성비료의 개발

앞서 설명한 방법들에 의하여 지금까지 여러가지의 지속성비료가 제조되었으며 이들은 이 미 각종의 분야에 상세히 소개되어 있다.\(^{16,17,18}\) 여기서는 이를 지속성 비료중에서 비교적 제조 공정 및 작물시험에 관한 연구가 많이 진행되어 성과가 현가까지 이론 제품 몇 가지만을 선정하여 소개하고자 한다.

3-1. Ureaform(UF)

요소와 알데히드의 축합고분자는 1930년대에 엘인이성수지로 처음 개발되었으며 1940년대 후반에는 중합도를 조절하여 얻어지는 지분형물질이 지속성비료로 유효함을 밝혀졌다.\(^{15}\) 이축합반응은 산 또는 알카리 축화에서 쉽게 진행되며 중합도, 요소/알데히드의 비고정보다 기고도(Cross-linking) 등을 변화함에 따라 성분물의 물에 대한 용해도를 조절할 수가 있다.

특히 Ureaform은 아래에 표시한 바와 같이 Urea와 Formaldehyde의 축합물로서 반응이 비고적 따르고 질소의 함량은 높아서(38%N) 지속성비료로 유리하다.

\[
\begin{align*}
\text{O} & \\
\text{m H}_2\text{N—C—NH}_2 + n \text{HCHO} & \rightarrow \\
\text{O} & \\
\text{H—NH—C—NH—CH}_2—\text{NH—C—NH}_2 + n\text{H}_2\text{O} & \text{Ureaform}
\end{align*}
\]

이 반응은 사용하는 Urea/Formaldehyde의 비, 반응온도의 PH, 온도, 반응시간, 복합등에 따라 제품의 성질하향, 물체의 용해도 등이 변화하기 때문에 반응는 물론 저장 및 사용시의 조건을 정확히 조정해 주는 것이 중요하다. Ureaform을 제조하는 공정은 낮은 농도의 반응용액을 사용하는 경우(Dilute Solution Process)와 높은 농도를 사용하는 경우(Concentrated Solution Process)의 두가지가 있다.\(^{15}\) 낮은 농도의 방법은 산축에 사용하여 비교적 낮은 온도에서(30°C) 반응을 진행시키고 미반응물은 다시 반응기에 넣는 한 반응용액을 알칼리로 중화하여가며 생성된 Ureaform은 입상화(Granulation), 건조등의 공정을 거친다. 이 방법은 공정의 제어가 용이하고 제품의 품질이 고정함에 미반응물의 최소와 여과 및 건조등에 따른 공정비용이 높다는 단점이 있다. 한편 높은 농도를 사용하는 방법은 농축된 반응용액을 알칼리로 만든 후 서서히 가열하면서 산을 점خت하고 다시 이 용액을 고온으로 유지한(80~100°C) 범위나 완전한 밀폐여부에 부터 급격히 반응시키는 방법이다. 생성된 Ureaform은 알칼리로 중화된 후 건조된다. 여기서의 염전은 반응시간이 짧고 공정이 간단하며 건조비용이 저다는 것이지만 반대로 제품의 품질이 고정하지 못한 단점이 있다.

Ureaform은 백색, 무취의 고체로서 토양중에 의하여 요소를 방출하게 되어 농량비료로 사용하거나 또는 다른 복합비료와의 혼합, 액체비료로 분산, 토양공기간에 함착하여 사용할 수 있다. 복합비료와 혼합사용되는 경우에
는 혼합시의 PH(5~6), 온도(200°F 이하), 혼합시간들은 주의 깊게 조절하여 Ureaform이 더 이상 중합되는 것을 방지해야 하며 저장시에 도 온도를 100°F 이하로 유지하여야 한다. Ureaform의 제조시에 PH 조절제로는 통상 황산이 사용되지만 대신 인산을 사용함으로써 제품이 복합비료의 효과를 갖게 하는 경우와 오용출수 도의 조절을 위하여 발포용(Foamed) 제품을 제조한 예도 있다. Ureaform은 일반작물보다는 잔디용, 화분용 및 특수작물용 등으로 사용되고 있는데 상업화된 제품으로는 미국의 Du Pont 사에 의하여 개발된 유과의 혼합물인 “Uramite”, 암모니아수화물 혼합물인 “Uramon” 등이 있다. 미국은 1972년에 Du Pont, Hercules Powder, Borden Chemical 등에 의하여 녹산 약 50,000 톤의 Ureaform을 생산한 것으로 알려졌다. 일본의 경우 1976년의 생산량은 녹산 약 3,000 톤 정도이다. 31)

Ureaform 이외에도 다른 암모니아트의 촉촉
물이 다양하게 제조되었는데 이중 대표적인 것
은 Acetaldehyde와의 반응물인 “Urea-Z”, 32)
Crotonaldehyde와 반응한 “CDU”, 33) Isobutyraldehyde와의 “IBDU” 34) 등으로 특히 일본에
서 상업화가 많이 이루어져 1976년의 녹산 생산량은 CDU 7,000 톤, IBDU 20,000 톤이
있다. 35) 이들은 모두 Ureaform과 유사한

Table 1. Controlled-Release Fertilizers by Chemical Modification

<table>
<thead>
<tr>
<th>Name</th>
<th>Raw Materials</th>
<th>N Content (wt %)</th>
<th>Melting pt. (°C)</th>
<th>Water Solubility (gr/100 ml)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ureaform</td>
<td>Urea, Formaldehyde</td>
<td>23-41</td>
<td>111-230</td>
<td>sol.-insol.</td>
<td>17</td>
</tr>
<tr>
<td>CDU</td>
<td>Urea, Croton-aldehyde</td>
<td>35</td>
<td>260</td>
<td>0.06</td>
<td>17</td>
</tr>
<tr>
<td>IBDU</td>
<td>Urea, Isobutyl-aldehyde</td>
<td>32</td>
<td>205</td>
<td>0.1-0.01</td>
<td>17</td>
</tr>
<tr>
<td>Triazone</td>
<td>Urea, Ammonia</td>
<td>32-67</td>
<td>360</td>
<td>0.008-0.27</td>
<td>21</td>
</tr>
<tr>
<td>Oxamide</td>
<td>Urea, Hydrogen-Cyanide</td>
<td>32</td>
<td>417</td>
<td>0.04</td>
<td>26</td>
</tr>
<tr>
<td>Guanyl-urea</td>
<td>Urea, Calcium-cyanamide</td>
<td>55</td>
<td>105</td>
<td>—</td>
<td>27</td>
</tr>
<tr>
<td>Dicyan-diamide</td>
<td>Urea, Calcium-carbide</td>
<td>67</td>
<td>210</td>
<td>2.3</td>
<td>23</td>
</tr>
<tr>
<td>Glycol-uril</td>
<td>Urea, Glyoxal</td>
<td>39.4</td>
<td>300</td>
<td>—</td>
<td>29</td>
</tr>
</tbody>
</table>

HWAAHAK KONGHAK Vol. 19, No. 1, February 1981
로 두번째 방법은 NH₄Cl이 부산물로 생성되기 때문에 이의 처리가 문제가 된다. 그러나 해수나 Brine Water를 사용하는 공정에서 Scaling의 방지를 목적으로 MgCl₂를 제거하는 경우하
면 여기서의 부산물인 MgCl₂를 사용하여 MAP를 제조할 수 있기 때문에 경제성이 많은 수가
있다. 상업적으로 널리 쓰이는 공정은 천계의 방법이며 33) 반응과정의 Mg(OH)₂, 인산과 10%과량의 앙모니아가 동시에 반응까지 입상체조가
로 흔히되고 여기서 생성된 MAP는 건조, 냉
각, 입자선별 등의 과정을 거친다. 최종 MAP의 입자크기는 제품의 용융속도(이것은 MAP의 용해도 보다도 톱산량 미생물에 의한 MAP의 분해에 의하여 결정되는 연구결과32가 있음)
에 영향을 미치기 때문에 너무 크거나 너무 작은 입자는 다시 반응로 흘러간다. Mg(OH)₂는 46%의
건물 형태로 반응장에 주입하고 인산은 50~55%의 P₂O₅를 탄화하는 Furnace-Grade를 사
용하는 것이 보통이다. 이러한 적절한반응기의
이에 앙모니아와 인산을 먼저 반응시키고 생성
된 H₂NH₄PO₄를 Mg(OH)₂와 반응시키거나, 또
는 Mg(OH)₂와 인산을 먼저 반응시킨 후 앙모니아라 반응체로써 공정의 제어를 하상시키는
방법도 제시되었다. 한편 Rock Phosphate와 황
산을 반응시키고 여기에 앙모니아수, MgSO₄, 불
가한 후 (NH₄)₃CO₃ 존재하에서 가열반응시키는
반응과 Dolomite와 Calcium Phosphate의 비응
물을 Ammoniation 시키는 방법도 있다.
MAP를 각종 작물의 재배에 사용했을 때 그 효율성을 제레식리보, Ureaform의 경우와 비교한 결과를 보면 MAP는 특히 원예작물, 화
분재배, 유실수, 삼립용 재배에서 Ureaform보다도 우수한 것으로 나타났다. 이것은 MAP가 지속성효과의 외에도 N, P, Mg 등의 유호성분을 모두 공급하기 때문인 것으로 추정된다. MAP는 단독(8-40-0)으로 사용되기도 하지만 이와 유사한 지속성효과를 갖는 Magnesium Potassium
Phosphate(줄여서 MPP)와 혼합사용하여 복합비료(7-40-4)의 효과를 기하는 경우도 있
다. 마그네슘 외에도 Cu, Co, Fe, Mn, Zn 등이
인산염도 지속성비료로서 유효하며 특히 각
물의 필요성분인 이들 미량소물을 공급할 수가 있어서 여러가지의 혼합으로 사용되고 있다.

3-3. Sulfur Coated Urea(SCU)

이 제품은 주로 미국의 TVA에 의하여 개발
되었는데 34) 빅터블록에서 유황을 섞힌 후 이
유는 유황이 서유의 발효공정에서 다량으로 갑
세게 얻어지는 결과 곤충에서 고무상유황으로
되어 비료성질이 좋아지다는 점. 토양에 따라 유황성분의 결핍을 줄이는 경우가 있다는 점 등이
다. SCU의 개발조기에에는 유황을 농지에 뿌여서
입상요소에 부합되도록 하는 방법이 시도되었으나
용량화수 등의 문제외에 SCU는 고온(154°C 이상)에서 인화되는 액상의 Molten Sulfur
를 적절 오소표면에 분무시키는 방법이 개발
되었다. 35)

SCU를 제조하는 공정은 다음과 같다. 먼저
업상의 요소를(입자 크기: 0.1~1.0 mm) 65~75°C
로 예열시키 다음 여기에 154°C의 Molten Sulfur
를 분무부드럽게한다. 이 피복공정은 회전
Rotary Drum) 내에서 행하여 지는데 이때의
회전속도, 유효부속도, 분무시간과 피복후의
냉각속도 등에 따라 유효성능의 성질이 결정된
다. 그러나 이와같이 유효으로만 피복된 제품의
표면은 작은 근열(Crack)과 구멍(Pinhole) 등이 있어서 분무에서 생긴 요소가 이 근열과
구멍으로서 씨나 오기 때문에 유효속도를 조
절하기가 힘들다. 따라서 유효피복 후 제품이
병각되기 전에 소량의 밀봉제(Sealant)를 추가
로 분무하여 이를 균열 및 작은 구멍을 밀봉시
켜야 한다. 지금까지 밀봉제로는 Microcrystalline Wax, 저분자량의 Polyethylene 및 그 공중
합물, Brightstock Oil, Rice Bran Wax 등 각
종의 물질이 사용되었다. 유효가 밀봉제의 피복
이 끝난 제품은 낮은(43°C)된 후 여기에 다시
분말의 구조물로 인하여 제품의 지상성, 침수성
(Sinking in Water) 등을 증가 한다. 통상 사
용되는 피복물질의 양은 유황 15~25%, 밀봉제
2%, 구조물 2.5~3%이다. 여기서 유효의 피복
제는 사용하는 요소인자의 크기 및 표면상태에
따라 변화하는데 즉 입상화(Grainulation)의 지
리공정을 거쳐서 모양이 거의 구형(球型)이고 포인트 베드러운 잔상요소(Granular Urea)의 경우(입자크기는 0.18 잔포)에는 15~20%의 유황으로도 충분한 바비하여 이러한 공정을 거쳐 지 않은 Prilled Urea는 입자의 모양이 불규칙하고 포인트가 거칠어서 20~35%의 유황을 필요로 한다. SCU의 개발에서 가장 문제가 되는 것은 밀봉제의 설정이다. 값싼 유황을 피복물질로 사용하고자 한 이초의 의도에 반하여 제품표면의 균열등을 밀봉시키기 위한 밀봉제(유황가격의 약 10배)를 사용하게 되면 따라 제품의 단가가 높아지는 것은 물론 이들 밀봉제가 온도에 민감하고 또 토양중의 박테리아등에 의하여 쉽게 분해되기 때문에 이러한 문제점이 없는 값싼 밀봉제를 찾는 것이 어아이도 해결되지 않은 연구 과제이다. 비료에 박테리아에 밀봉제의 분 해를 막기 위하여 소량의 담 박테리아제를 첨가 하는 방법이 제안되었지만 아직까지는 실험적인 해결사이다고 보아 한다.

SCU는 특히 수도작과 같이 수분이 많은 곡물(밀, 백수)배수(排溉)를 거치는 작물에 대하여 그 효과가 수확한 것으로 밝혀졌다. 우리나라의 농 춘전형식에서 생한 수도작에 대한 SCU의 실험 결과(Table 2)를 보면 시비지역에 따라 약간의 차이가 있지만 재배식조용의 분할비에서 비하여 배수의 수확량이 평균 10~15%가 증가됨을 알 수가 있다. SCU는 밀봉제의 추가비용으로 인한 가격상승문제가 있지만 그에 비해 천혜까지 알려진 지속성비료 중에서는 가장 값이 싸고 그 효능도 우수한 것으로 알려져서 특수작물용 외에도 일반작물용을 위한 법령비료로서의 사용가능성이 크다고 보았다. SCU는 현재 TVA에서 년산 66,000 톤 규모의 시험공장을 건설하고 ICI(Imperial Chemical Industries)는 년산 10,000 톤 규모의 시설로 “Gold-N”이라는 제품을, 일본의 미즈코도야(三井東亞)는 “피복화성 1호”라는 제품(생산규모 미상)을 각각 생산중이다. 이미 이와 같은 Canadian Industries Ltd에서 년산 30,000 톤 규모의 SCU 공장을 1975년에 건설하였다.

피복물질로 유황래시 각층의 고분자물질을 사용하는 방법도 많이 연구되었지만 넉개가 경제성 때문에 연구발표나 특허등에서 그리고 크게 상업화가 되지 않은 실정이다. 넉개를 특수작물용을 위한 상업화의 예로는 미국의 Archer Daniels Midland Co.(후가 Sierra Chemical Co. 에 특허권 양도)에 의하여 개발된 “Osmocote”와 역시 미국의 M Co.에 의하여 개발된 “Precise”로써 전자는 Dicyclopentadiene과 각종 Glycerol Ester의 공중합물을 사용한 다층복 (Multi-layer Coating) 제품이며 후자는 N, P, K 성분을 함유한 액체비료(12-6-6)를 역시 유사한 고분자물질로 피복시킨 것이다. 모두가 제품가격 때문에 가정용으로 소량의 사용되고 있다.

Table 2. Comparison of SCU and Urea for Paddy Rice*

<table>
<thead>
<tr>
<th>비중</th>
<th>동</th>
<th>일</th>
<th>밀</th>
<th>반</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea</td>
<td>SCU</td>
<td>Urea</td>
<td>SCU</td>
</tr>
<tr>
<td>농업기술연구소 충북</td>
<td>688</td>
<td>722</td>
<td>495</td>
<td>591</td>
</tr>
<tr>
<td>충남</td>
<td>654</td>
<td>698</td>
<td>530</td>
<td>569</td>
</tr>
<tr>
<td>전북</td>
<td>506</td>
<td>518</td>
<td>294</td>
<td>312</td>
</tr>
<tr>
<td>전남</td>
<td>432</td>
<td>503</td>
<td>399</td>
<td>426</td>
</tr>
<tr>
<td>경북</td>
<td>446</td>
<td>563</td>
<td>417</td>
<td>513</td>
</tr>
<tr>
<td>경남</td>
<td>512</td>
<td>549</td>
<td>363</td>
<td>354</td>
</tr>
<tr>
<td>평균 수량</td>
<td>528</td>
<td>580</td>
<td>392</td>
<td>443</td>
</tr>
<tr>
<td>수량 저 수</td>
<td>100</td>
<td>109.8</td>
<td>100</td>
<td>113.0</td>
</tr>
</tbody>
</table>

* 자료: 농촌진흥청 1973년 실험결과

4. 경제성 검토

지속성비료의 경제성은 두가지 측면에서 고려되어야 한다. 즉, 첫째는 재매식비료와 비교한 지속성비료의 제조단가 검토이며 둘째는 이를 지속성비료를 사용하였을 때 작물의 성장 및 수확량증가로 인한 부가와 토수율의 검토이다.
4-1. 제조가격
지속성비료는 재래식 비료의 비하여 추가적인 제조공정, 반응물질, 피복물질 등을 사용하기 때문에 그 생산비가 일반적으로 비싼 편인데 특히 화학적 지속성비료의 경우는 물리적인 성분에 비하여 2~3배의 높은 다가를 보이기도 한다. 참고로 1974년 발의 가격을 보면 \(\text{Ureaform} \)은 \$375/톤, \$950/N 톤인데 비하여 SCU는 \$168/톤, \$524/N 톤이었다. 현재 \(\text{Ureaform} \)의 가격은 \$170/톤, \$370/N 톤으로 N 성분기준으로 하여 \(\text{Ureaform} \)의 가격비는 \(1:1.4:2.6 \)을 보인다. \(\text{Ureaform} \) 이외의 \(\text{CDU}, \text{IBDU}, \text{MagAmP} \) 등도 유사한 가격을 가지며 따라서 화학적 지속성비료보다는 물리적 성분이 제조가격에서 유리함을 알 수가 있다. SCU에 대하여는 TVA 연구결에 의한 제조가격의 산출 결과가 있는데 \(\text{Table 3} \)에 표시된 바와 같다. 여기서 보면 제조가격의 대부분이 \(\text{요소를 위시한 피복물질} \)에 의하여 결정되며 시설 및 운전비용은 10% 이상을 알 수가 있다. 특히 유황이외에도 밀봉제를 사용함으로 인한 가격상승은 현저하다. 이와같이 피복물질이 제품총량의 약 30%를 차지하게 되면 따라 최종제품
중의 N의 향량은 31% 밖에 안되며 (요소의 경우 46%) 이것은 N 기준당의 제조가격을 높이는 결과가 된다.

4-2. 투자회수율
지속성비료는 재래식 비료의 비하여 비싸지만 이것은 작물재배에 사용하였을 경우 작물의 성장 및 수확량증가로 인한 이익을 감안하면 현실
한 경제성을 갖게 된다. 앞서와 언급한 바와 같이 SCU 톤 수도작에 사용하였을 경우 쌀의 수확량은 10~13%의 증가를 보이는 것으로 나타
났으며 이것은 SCU와 쌀의 가격차이를 고려할

<table>
<thead>
<tr>
<th>Table 4. Economics of SCU Production*</th>
</tr>
</thead>
<tbody>
<tr>
<td>사업비용</td>
</tr>
<tr>
<td>농작계발</td>
</tr>
<tr>
<td>농작건설</td>
</tr>
<tr>
<td>농작가동</td>
</tr>
<tr>
<td>수확량증가</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*생산규모: 50만톤 SCU/년

Figure 2. B/C Ratio for SCU Production

Table 3. Production Cost of SCU(32-0-0-26S)*

<table>
<thead>
<tr>
<th>Production Costs</th>
<th>Raw Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur at $48/MT</td>
<td>12.50</td>
</tr>
<tr>
<td>Sealant Mix at $375/MT</td>
<td>7.50</td>
</tr>
<tr>
<td>Conditioner at $75/MT</td>
<td>1.90</td>
</tr>
<tr>
<td>Urea at $170/MT</td>
<td>118.15</td>
</tr>
<tr>
<td>Subtotal</td>
<td>140.05</td>
</tr>
<tr>
<td>Operating Costs</td>
<td>9.45</td>
</tr>
<tr>
<td>Capital Charges</td>
<td>6.50</td>
</tr>
<tr>
<td>Production Cost, $/MT product</td>
<td>156.00</td>
</tr>
<tr>
<td>Return on Investment, 20% pretax</td>
<td>11.80</td>
</tr>
<tr>
<td>In-plant Price</td>
<td></td>
</tr>
<tr>
<td>$/MT of product</td>
<td>167.80</td>
</tr>
<tr>
<td>$/MT of N</td>
<td>524.00</td>
</tr>
</tbody>
</table>

* Year: 1978, Ref. 40
때에 높은 경제성을 끌어맞잡다고 보았다. 참고로 국내에 50만톤 규모의 SCU 공장을 건설하고 이를 사용하는 경우 생산 수확량 증가에 따른 투자회수율의 성장과는 'Table 4 및 Fig. 2'에서와 같이. 이 결과에 의하면 생산 수확량이 1%증가한 경우 B/C Ratio는 이미 1.0을 넘는 1.53에 달하며 3%, 6%의 증가, 10% 이상의 경우 B/C Ratio는 각각 4.6, 9.2가 되어 투자에 대한 비율이 지극히 높다 는 것을 알 수가 있다.

한편 이상의 투자회수율 검토는 저축성비로의 사용에 따른 몇 가지 점검 및 문제점 등을 고려하지 않은 것이다. 즉, 시비자료의 조건, 제품의 다양한 변화에 의한 도량 및 제품의 쓰레기, 비료의 과다용량 등이 부속적으로 일정으로 고려되어야 하며 반면에 세복물질(특히 비료)에 의한 도량변화, 제품의 저항성, 그리고 제품의 무게부하로 인한 비료증가의 부담을 문제점으로 처리되어야 한다.

5. 연구결과

지금까지 알아본 저축성비로의 개발에 있어서의 문제점을 명시가 정리하고 이에 따른 앞으로의 연구방향을 제시하면 다음과 같다.

5-1. 피복물질의 선정

앞서 언급한 바와 같이 구조물이나 원재 등에 특수용도를 제외하고는 저축성비로의 가격이 제재적비로의 약 40%이상(N 기준)이 되어서는 실제의 사용자에게 범용비료로서의 성과성을 적다고 보았다. 따라서 저축성비로의 방법으로는 화학적인 방법보다는 값이 비교적 싸고 또한 기존의 비료를 그대로 이용할 수 있는 유효적인 방법이 유리하다. 특히 피복에 의한 방법은 공정이 비교적 간단하고 용출속도의 조절이 쉬으며 비료성분의 함량을 높게 유지할 수가 있어서 종은지 여기서 피복물질로서 값이 저렴하고 피복 성질이 우수하여 토양에 해가 없는 물질을 선정하는 것이 중요하다. 지금까지 피복물질 중에는 유황이 비교적 좋으나 이것도 균열 등으로 인한 발포등의 추가사용 때문에 아직도 만족할 만한 것이라고 보기는 부족한 실정이다. 특히 우리나라와 같이 유황을 수입해야 하는 경우에 정조가격의 추가상승을 초래하며 또한 유황으로 인한 토양의 산성화는 폐해에 쉽게 문제가 오기할 가능성이 있다고 본다. 한편 피복물질이 용출속도의 조절뿐만 아니라 토양특성에서 검지 후 분해되어 토양 및 작물의 필요료를 하는 유효성분을 공급할 수 있다면 가장 바람직할 것이다. 이에 이어는 현재 국내의 탄소식품연구소와 미국의 IFDC(International Fertilizer Development Center)에 의하여 연구가 진행중이다.

5-2. 작물에 필요한 비료의 용출속도

저축성비로의 개발에서 향상 문제가 되는 것 은 과연 작물이 필요로 하는 최저의 비료용출속도가 무엇인가 하는 문제이다. 지금까지는 대개의 경우 과적(過多) 또는 과적(過少)의 시비를 하였을 뿐에 작물에 미치는 영향이 연구되어 왔을 만큼LowerCase:한의 용출속도의 비료공급이 가장 내 역의 성장 및 수확량을 초래하는가에 대하여는 아직 연구가 미진한 상태이다. 이 문제는 사용하는 비료의 성분, 작물의 종류, 토양의 상태, 기후 및 수조조건 등을 모두 고려하여 할 때로 이므로 완벽한 연구진의 참여가 요구되지만 특히 우리나라의 경우 특정한 조건(예를 들어 요소의 수조적, 수조적, 한국토양, 한국기후 등)에 따른 연구결과를 배경으로 추정할 필요가 있다고 본다. 지금까지의 연구결과에 의하면 수도작의 경우 보내기 후 2~4주 기간에는 비가 작기 때문에 요소의 필요량이 비교적 적고(총요량의 10% 이하) 그 후 2~3개월간에는 비의 세정에 따라 수조의 비료공급이 요구되며 수확기에 이르러서는 거의 필요로 하지 않는 것으로 알려졌다. 이와 같은 비의 요소요량을 만족시키기 위한 저축성비로의 용출함은 용출량-기간의 도표에서 "S"형으로 보이기 때문에 통상 "S-형 용출특성"이라고 불리운다. 참고로 SCU의 용출속도는 초기에는 비교적 빠르고 시간이 지남에 따라 느려지기 때문에 이러한 "S-형 용출특성을" 갖
지 않는다. 수도작을 위하여 "S-형 육중특성"을 갖는 지속성비료가 개발되어야 할 것이다.

5-3. 품질관리

지속성비료는 온실속도가 느리기 때문에 많은 잎을 생산하는 경우 그 품질을 뛰어난 품질로 하려는 문제가 생긴다. 지금까지 고안된 방법으로는 제품을 40℃의 물속에 넣고 교반하지 않은 상태로 7일간 방치한 후 그 온실속도를 측정함으로써 실제로 토양중에서의 육중속도를 추정하는 방법이 있다. 그러나 지속성비료는 온도(특히 고분자 흐름제품은 온도증가에 따라 온실속도가 급격히 증가), 교반(특히 복합질의 교반에 의한 파손), PH, 토양중의 미생물(SCU에서의 밀봉제) 등에 의하여 그 온실속도가 민감하게 변하도록 이에 대한 보다 깊은 연구가 필요하다. 또한 고분자나 탄소 등을 사용한 흐름형 지속성비료의 경우에는 오랫동안 저장함에 따라 압력, 온도, 습도 등에 의하여 변질되거나 물리적 파손이 있으며 시비하였을 때에 물에 가라앉지 않고 또는 약도 있어 이들이에 대한 고려도 이루어져야 한다. 다행히 산출을 하는 경우에 균일한 품질의 제조품체(SCU의 경우에 심각함)도 공정기술이 참가되어야 한다.

5-4. 비료정책

지속성비료는 지금까지 많은 연구가 진행되었으나 아직도 법령비료로서 대량 사용할 수 있는 제품은 개발되지 않았다. 그러나 앞으로의 연구에 의하여 우수한 지속성비료가 개발될 가능성은 높다고 본다. 여기서 우리나라의 비료정책에 대하여 한계가 지정하고 이 글을 짠고자 한다. 우리나라의 지금까지 비료의 생산 및 판매에 주로 경제적, 환경적, 경제적, 시장적, 재생로직 및 산림용 등으로 제한되어 왔기 때문에 지속성비료의 개발에 따른 특수적 물리적 특수특성, 양 그리고 가성용 등의 비료시장이 개척되지 않 은 상태이다. 외국의 경우와 보통 각국의 비료를 순차적으로 구할 수 있고 그 경전도 소비자에 따라 다양한 기에 대한 지속성비료와 같은 특수비료의 사용이 확실하여 미국에서는 1970년의

\[
\text{Table 5. Fertilizer Production and Consumption in Korea*}
\begin{tabular}{|c|c|c|}
\hline
\text{비료} & \text{년도} & \text{1971년} & \text{1977년} \\
\hline
\text{생산 능력} & 1329 & 2908 \\
\text{생산 실적} & 1333 & 2410 \\
\text{농협농수협실적} & 1275 & 1739 \\
\text{소비 실적} & 1310 & 1661 \\
\text{수출 실적} & 121 & 673 \\
\hline
\end{tabular}
\]

* 인용문헌: (3)

비상고가 약 2억불에 이르고 있다. 더욱이 우리나라의 경우에는 비료의 생산능력이 소비량보다 현저히 많아 Table. 5에 보는 바와 같이 1977년의 생산능력 290만톤에 비하여 실제의 생산은 240만톤이며 더욱 소비량은 166만톤 밖에 안된다. 인공성비료는 해의 수출을 기할 수 있겠으나 비료가격의 불균형이 문제로 되고 있다. 따라서 지속성비료와 같은 특수비료의 개발로 국내 비료수용의 효율화 및 시장개척은 물론 부가가치가 높은 비료를 수출으로서 가격의 불균형을 개선하는 비료정책이 이루어져야 할 것이다.

이 분야에 관심이 있는 분들은 위하여 본문에 인용된 문헌의 최근의 총설문헌(44-57)을 수록하면 참고하기 바란다.

6. 참고 문헌

39. Florida Registration No. 758~1000.
46. N.B. Makarov, Agrokhimiya, 10 (1975), 144.

HWAYAK KONGHAK Vol. 19, No. 1, February 1981
55. Neiña Nieto and Jorge Juan, Ing. Quim. 9 (1977), 121.
57. M. Yamaguchi, Kagaku to Seibutsu, 13 (1975), 703.