Preparation of Basic Magnesium Carbonate by Gas Method
II. Preparation of Magnesium Hydroxide
Moon Deuk Lee
Dept. of Applied Chemistry, College of Engineering, Seoul National University

ABSTRACT
Experimental works on the production of magnesium hydroxide with fast sedimentation velocity and low calcium content have been conducted using saline water and dolomite. Best result was shown to be obtained by using 3% dolime water and 1.2 times of theoretical amount for saline water. The coagulation constant of 0.42% magnesium hydroxide in 2.27% NaCl solution was found to be -1.1×10^{-6}.

The calcium content of Mg(OH)$_2$ and its sedimentation velocity was found to be inversely related, and addition of chlorides to Mg(OH)$_2$ solution increased flocculation in the order,

$$\text{CaCl}_2 > \text{NaCl} > \text{MgCl}_2$$

while addition of hydroxides had deflocculation effect in the order

$$\text{Ca(OH)}_2 > \text{NaOH} > \text{Mg(OH)}_2 > \text{NH}_4\text{OH}$$

This shows that chlorides and hydroxides have opposite effect on the sedimentation velocity of Mg(OH)$_2$, and thus Mg(OH)$_2$ in basic solution may be concluded to be in an unstable colloidal state of Mg(OH)$_2$/OH.

Coagulation rate of magnesium hydroxide in 2.27% NaCl solution was found to increase with the period of agitation, and increase in calcium content was observed with the sedimentation velocity, while in the solution which do not contain NaCl the converse was true.
하는 해수의 양이 수산화마그네슘의 침수 함량 및 침강 속도에 영향하며 특히 침수 함량과 침강속도는 상관 관계가 있음을 확인하였으며 이에 보고하는 바이다.

시료 및 실험 방법

1. 백운석의 소성

표 1과 같은 화학 성분을 가진 경기도 파주산 백운석을 3cm3 크기로 계OrCreate 950~1100°C의 전기로 양에서 6시간 가열한 후 이것을 5mesh 크기로 크리로 만들어 기밀한 봉에 넣고 이것을 에열환이 들어 있는 데시케이터에 넣어 보관하였다.

<table>
<thead>
<tr>
<th>TABLE 1. Chemical Composition of Dolomite (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

2. 틀리임젓의 조제

소성물 100g을 탄산이 포함되지 않은 증류수 500ml에 교반하면서(180r.p.m) 일정 온도 20, 30, 40, 60 및 80±2°C를 유지하게끔 소성물을 조급적 넣어 1시간 반응 시킨 다음 100mesh의 체에 걸러서 정량한 부터 100ml 되게하여 기밀한 봉에 넣어 표 2와 같이 원액을 만들어 사용하였다.

<table>
<thead>
<tr>
<th>TABLE 2. Stock Solution of Deline Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock solution</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>V</td>
</tr>
</tbody>
</table>

3. 영하마그네슘 용액의 조제

탄산산 및 탄산산인 해수의 대응으로 화학용 영하마그네슘 비율과 영하나트륨의 혼합 용액(MgCl2 0.422g + NaCl 2.27g/100ml)을 만들어 사용하였다.

4. 해수

본 실험에 사용한 해수는 인천시 소재에서 2월에 새취한 것이며 그 주된 화학 성분은 표 3과 같다.

<table>
<thead>
<tr>
<th>TABLE 3. Chemical Composition of Saline Water (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>1.022</td>
</tr>
</tbody>
</table>

5. 틀리임젓 중의 수산화칼슘 및 마그네슘의 점량

시료 10ml을 비이커에 분عق하여(이때 틀리임젓의 농도가 직경 피펫으로 취했을 때 피펫 안쪽에 들어 있는 시료는 증류수로 씻어 원액에 합하였다.) 전한 양산 3ml을 넣어 용액시킨 후 1000ml로 회석하고 그중 25ml를 분획하여 Eriochrome Back. T(B.T) 및 Dotte. N.N (N.N)을 가지약으로 사용해서 \[\frac{M}{100} \] E.D.T.A 용액으로 정량했다. 그 결과는 표 2와 같다.

6. 수산화마그네슘의 점강 비용 및 속도의 측정

시료 중의 침술 1g당량에 취한 염마그네슘 1.2g당량 배의 염마 마그네슘용액 100ml에다 시료 임용장은 방한 19±0.5°C에서 180r.p.m의 일정한 교반 속도로 5분간 반응시킨 후 같은 연산을 유지한 황온 조에 정격한 50ml 용액(또는 1.0cm x 1.5cm)에 넣어 반석하여 수산화마그네슘 점전의 경계면이 침강되는 비용 및 속도를 측정한다. 즉 시간에 대한 경계면의 높이 를 10분마다 임시고, 그중 비교적 넓은 점강 속도를 유지하는 20~60분간의 측정치를 평균하여 나타냈다.

7. 수산화마그네슘 중의 침술 함량 점량

위의 실험 6에서 사용하고 남은 액을 건석시 증류수 로 5회 정도 후 액산으로 녹인 후 E.D.T.A법으로 점량하였다.

실험 결과 및 검토

1. 틀리임젓의 농도와 수산화마그네슘의 점강 속도, 점강 비용 및 침술 함량과의 관계

그림 1은 원액 I, II, III, IV, 및 V의 각각 10, 7, 5, 3 및 0.3% 농도의 틀리임젓을 만들어 일정량의 염마마그네슘용액에 반응시키 고 점강 속도를 시간에 대해 도시한 것이고 표 4는 원액의 수화 조건과 그 농도 변화
에 따르는 평균 침강 속도와 수산화아모니움 중의 침강 함량을 비교한 것이다. 그림 2는 원액 III에 대한 농도 변화에 따른 침강 비용을 시간에 대해 나타낸 것이다.

그림 1에서 보는 바와 같이 수화 운도 및 물질의 농도가 낮을 수록 침강 속도가 빠른다. 즉 높은 운도에

Fig. 1. Effect of Conc. of Dolime Water on the Velocity of Sedimentation of Mg(OH)₂

Fig. 2. Effect of Conc. of Dolime Water on the Subsidence Rate of Suspension

시 수화된 것일 수록 Cauesticizing가 증가될 것이다.⑨-10) 침강속도가 느릴 것이고 반응 물질의 농도가 감소할 수록

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Stock sol. Conc. of Dolime (%)</th>
<th>I mm min</th>
<th>% of CaO MgO</th>
<th>II mm min</th>
<th>% of CaO MgO</th>
<th>III mm min</th>
<th>% of CaO MgO</th>
<th>IV mm min</th>
<th>% of CaO MgO</th>
<th>V mm min</th>
<th>% of CaO MgO</th>
<th>Conc. of Mg(OH)₂ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.0</td>
<td>0.5188</td>
<td>0.5061</td>
<td>0.5152</td>
<td>0.3882</td>
<td>0.3156</td>
<td>0.435</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.0</td>
<td>0.4528</td>
<td>1.95</td>
<td>0.4220</td>
<td>2.15</td>
<td>0.4436</td>
<td>2.61</td>
<td>0.3556</td>
<td>2.02</td>
<td>0.2870</td>
<td>1.85</td>
<td>0.437</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>0.4720</td>
<td>0.4180</td>
<td>2.58</td>
<td>0.4710</td>
<td>0.3682</td>
<td>0.3033</td>
<td>0.426</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
<td>0.6105</td>
<td>1.21</td>
<td>0.4580</td>
<td>2.03</td>
<td>0.4870</td>
<td>2.63</td>
<td>0.4297</td>
<td>1.97</td>
<td>0.3030</td>
<td>1.67</td>
<td>0.395</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>0.6241</td>
<td>0.5670</td>
<td>2.42</td>
<td>0.6090</td>
<td>0.5358</td>
<td>0.3720</td>
<td>0.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.3</td>
<td>0.7867</td>
<td>2.75</td>
<td>1.0108</td>
<td>3.20</td>
<td>0.7746</td>
<td>2.39</td>
<td>0.7394</td>
<td>2.45</td>
<td>0.6665</td>
<td>2.06</td>
<td>0.173</td>
</tr>
</tbody>
</table>

TABLE 4. Effect of Concentration of Dolime water on the Velocity of Sedimentation and Amount of Calcium in Magnesium Hydroxide.
입자는 커지므로 따라서 침강 속도가 빨라진 것이다. 단 10% 용액은 7%보다 약간 빠른 정량을 나타내고 있다. 이것은 원자핵의 농도가 증가함에 따라 입자간의 응집성에 의해 상호 작용하는 입자가 근접한 입자군을 형성하기에 충분한 크기를 갖게 되어 명확한 경계면을 형성하며 침강하게 될에 기인한다고 보아야 할 것이다.

표 4를 종합적으로 보면 같은 항목에서 적은 것은 불과 일정치의 농도, 3% 정도가 양호하였음을 보여 준다. 즉 동일한 원자핵이라도 그 성질 구조 또는 전자구 구조의 차이에 따라 각각 그 침각 특성이 현저하게 상이 하기를 알 수 있다.

2. 수산화마그네슘의 응집 항수

그림 2에서 나타낸 수산화마그네슘의 침강 비율 추정치로 다음 식(11)에 의해 시간에 따른 응집 항수를 계산한 것이 표 5이다.

\[
\text{Table 5. Coagulation Constant, } K_w \text{ of } Mg(OH)_2 \\
\text{for the Dolime Water (II-3)}
\]

<table>
<thead>
<tr>
<th>时间 (min)</th>
<th>(w \times 10^4) (g/ml)</th>
<th>(1/W_{\infty} - 1/W_1)</th>
<th>(1/W_1 - W_\infty)</th>
<th>Coagulation Constant (K_w \times 10^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.59</td>
<td>-0.2</td>
<td>9.95</td>
<td>-2.5</td>
</tr>
<tr>
<td>20</td>
<td>5.125</td>
<td>-0.25</td>
<td>"</td>
<td>-1.5</td>
</tr>
<tr>
<td>30</td>
<td>5.71</td>
<td>-0.31</td>
<td>"</td>
<td>-1.2</td>
</tr>
<tr>
<td>40</td>
<td>6.325</td>
<td>-0.39</td>
<td>"</td>
<td>-1.1</td>
</tr>
<tr>
<td>50</td>
<td>7.2</td>
<td>-0.49</td>
<td>"</td>
<td>-1.08</td>
</tr>
<tr>
<td>60</td>
<td>8.45</td>
<td>-0.62</td>
<td>"</td>
<td>-1.12</td>
</tr>
<tr>
<td>70</td>
<td>1.005</td>
<td>-0.79</td>
<td>"</td>
<td>-1.2</td>
</tr>
<tr>
<td>80</td>
<td>1.17</td>
<td>-1.10</td>
<td>"</td>
<td>-1.31</td>
</tr>
<tr>
<td>90</td>
<td>1.36</td>
<td>-1.24</td>
<td>"</td>
<td>-1.44</td>
</tr>
<tr>
<td>100</td>
<td>1.58</td>
<td>-1.51</td>
<td>"</td>
<td>-1.56</td>
</tr>
</tbody>
</table>

\[K_w = \frac{1}{W_\infty} - \frac{1}{W_1} - W_\infty = K_w(t-t_0)\]

표에서 수산화마그네슘의 원자핵은 그 자체가 응집성을 가지므로 그 침강 특성이 시간 경과에 따라 변화하고 있으나 각각 침각 역학에서는 일정한 값을 가져간 것을 알 수 있다.

3. 해수의 밀도 변화에 따른 수산화마그네슘 중의 캔슘 항수

II-3의 시료 중에 함유된 캔슘의 해수 중에 함유된 캔슘 항수를 완화할 수 없으나, 그 안정성은 시간 경과에 따라 변화한다. 그림 3은 이론상의 1.2배 되는 해수를 사용하였음을 때 캔슘 항수의 가장 적고 이보다 극히 합리적이다. 이에 비례하여 캔슘 항수는 점차 증가한다. 즉 해수가 부족한 상태에서는 미치환된 수산화فعل이 충분히 필요가 있고 또 필요 이상의 해수를 사용하면 원 해수 중인 캔슘해수 수산화마그네슘에 흡착되어 충전할 것이 기대된다. 실제 실험실 또는 공장에서 캔슘 항수는 약 12%보다 높아야 수산화마그네슘의 침강이 거의 안된다.

4. 수산화마그네슘의 알량 변화에 따른 두수산화마그네슘 중의 캔슘 항수

II-3 시료 중에 함유된 수산화 활과 완화될 수산화 마그네슘의 탄량비를 변화하여 상호 반응시킨 후 침강 속도 및 캔슘 항수를 조사한 것을 그림 4에 나타냈다. 즉 수산화마그네슘 1.2 g 탄량까지는 캔슘 항수는 점차 적어지는데 반해 침강 속도는 증가한다. 수산화마그네슘 1.2 g 부하보다 부족하든 함유는 미치환된 수산화활과 수산화 활과 수산화마그네슘에 구입 또는 흡착되어 존재할 것이다.
6. 교반 시간 변화에 따른 철강 속도와 침습 함량

영화마그네슘 용액 또는 NaCl을 포함하지 않은 영화마그네슘 100 ml에 2-3의 고속 180 r.p.m의 일정한 교반 속도로 5, 15, 30, 45, 60 및 80분씩 교반 시간을 변화시켜 반응시킨 다음 교반 시간에 따라서 수산화마그네슘의 침습 함량 및 침강 속도를 교반 시간에 대해 도시한 것이 그림 6이다.

그림 6-1에서 보면 가속된 교반 효과에 의해 용액이 충전되지 않아 용액 중에 유리된 침습이 흡착되어 침강 속도는 높아지고 반면 침습 함량은 증가하고 있다.

그림 6-2가 6-1과 상이한 조건은 2.27% 영화나트륨의 유무 뿐만한 교반 시간에 따른 용액 중에 침강 속도는 느리지만 침습함량이 감소하고 있다. 이 효과로 미루어 보면 영화나트륨은 수산화마그네슘의 응집을 촉진하는 효과가 있다고 볼 수 있다.

7. 반응 온도 변화에 따른 침강 속도 및 침습 함량

영화마그네슘 용액 일정량마다 2-3의 고속을 통해 18, 25, 30 및 45°C를 유지하면서 반응 가시하여 침강 속도와 침습을 측정하였고 또 해당 21°C에서 위의 동일한 조건을 반응시켜 온도 11, 14, 18°C에서 반응시킨 결과는 표 6과 같다.
TABLE 6. CaO/MgO in Mg(OH)$_2$ as Reaction Temperature of Lime Water + MgCl$_2$ (1)

<table>
<thead>
<tr>
<th>Reaction Temp. $°C$</th>
<th>11</th>
<th>14</th>
<th>18</th>
<th>25</th>
<th>35</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity of Sedimentation (mm/min)</td>
<td>—</td>
<td>—</td>
<td>0.489</td>
<td>0.486</td>
<td>0.379</td>
<td>0.380</td>
</tr>
<tr>
<td>% of CaO/MgO (1)</td>
<td>—</td>
<td>—</td>
<td>2.76</td>
<td>2.76</td>
<td>2.76</td>
<td>2.82</td>
</tr>
<tr>
<td>(2)</td>
<td>7.4</td>
<td>4.5</td>
<td>3.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

해수 반응에서는 온도 상승에 비해하여 감소 한량은 점차 감소하였고, 염화마그네슘 용액 반응에서는 18~45°C 간에서 반응 온도 변화에 의한 감소 한량은 대략 일정하였고, 침강 속도만은 25°C를 전후하여 약간 상이하였다.

8. 수산화마그네슘의 분석

소성물 결정물을 다른 것 조제법에 따라 30±2°C를 유지하면서 수작시킨 후 100 mesh의 천을 통과하지 못하고 남은 것을 전사하였다. 5%의 물로 만든 액을 약 10% 용액을 1.2 g 렌파에 되게 정가하여 19±0.5°C에서 5분간 반응시키 침강물을 매번 25 ml의 물로 5번 끓이 세척 회수에 따라 제거된 염화물을 Mohr 방법으로 정량하였고 그 결과를 표 7, 8, 9에 기록하였다.

TABLE 7. Chemical Composition of Dolime Water (Ⅱ) and residue (%)

<table>
<thead>
<tr>
<th>9g. Ioso</th>
<th>SiO$_2$</th>
<th>R$_2$O$_3$</th>
<th>CaO</th>
<th>MgO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolime Water (%)</td>
<td>27.33</td>
<td>0.05</td>
<td>0.05</td>
<td>39.05</td>
<td>32.94</td>
</tr>
<tr>
<td>Residue (%)</td>
<td>18.69</td>
<td>6.51</td>
<td>1.84</td>
<td>37.24</td>
<td>34.55</td>
</tr>
</tbody>
</table>

TABLE 8. Chemical Composition of Magnesium Hydroxide (%)

<table>
<thead>
<tr>
<th>SiO$_2$</th>
<th>R$_2$O$_3$</th>
<th>CaCO$_3$</th>
<th>Mg(OH)$_2$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.05</td>
<td>2.35</td>
<td>98.18</td>
<td>100.61</td>
</tr>
</tbody>
</table>
TABLE 9. Washing Round and Chloride Removed

<table>
<thead>
<tr>
<th>Washing round</th>
<th>Chloride removed g/100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtrate</td>
<td>1.4655</td>
</tr>
<tr>
<td>1.</td>
<td>0.0914</td>
</tr>
<tr>
<td>2.</td>
<td>0.0094</td>
</tr>
<tr>
<td>3.</td>
<td>0.0019</td>
</tr>
<tr>
<td>4.</td>
<td>1 drop AgNO₃ → Red Brown</td>
</tr>
<tr>
<td>5.</td>
<td>no ppt.</td>
</tr>
</tbody>
</table>

결 과

1. 화물의 세조시의 화학 온도가 높을 수록 그 농도가 높을 수록 절강 온도가 느린 경향이 있고 절강 함량은 화물의 농도 3%에서 일반적으로 높게 나타났다.

2. 2.27%의 염화나트륨 용액에서 제조된 0.42%의 수산화마그네슘 현탁액의 재린 절강 온도에서 응집 함유는 1.1〜1.5×10⁻²를 얻었다.

3. 화물의 세조시에 해당하는 이온량의 1.2배 사용하였을 때 절강 중의 절강 함량이 최저였다.

4. 수산화마그네슘의 절강 함량과 그 절강 수도는 상호 상관 관계가 있다. 즉 절강 함량이 많은 수록 절강 수도는 적다 늘랐다.

5. 수산화마그네슘 현탁액에 대한 절강물을 또는 수산화물 절강에 있어서 절강물은 CaCl₂>NaCl>MgCl₂ 순서로 응집을 촉진하는 대신 수산화물은 Ca(OH)₂>NaOH>Mg(OH)₂ 순서로 분산시키는 효과가 있다. 고로 수산화마그네슘은 염기성 용액에 속으로 하전된 Mg(OH)₂|OH⁻상태로 존재하는 불안정한 코로이드 물질이라고 추정된다.

6. 기계적 교반은 수산화마그네슘의 응집을 촉진하는 효과가 있으나 일정 시간 경과하면 그 응집력으로 인하여 절강 유체가 증가하여 응집체가 존재하지 않는 경우는 교반은 절강 수도를 높이게 한다.

7. 반응 온도는 18℃ 부분 가지는 콜도 상승에 따라 절강 중의 절강 함량이 적다.