The Rate of Solids Mixing in Gas-Solid Fluidized Bed

Shilk Namkoong and Woo Chang Chung

Dept of Chemical Engineering, College of Engineering Hanyang University

In this work, author tried to determine the rate of lateral solid mixing in gas-solid fluidized bed, using sodium chloride particles as a tracer.

The rate of solid mixing of different particle diameters (100~140, 60~140, 60~100 mesh) has been observed to depend upon gas velocity, and the empirical correlation has been found as follow:

\[W = a \exp(bu), \quad a, b = \text{const.} \]

Based on the rate of mixing determined in small scale apparatus, author proposed one of convenient scale-up procedure considered to be very important in the design of industrial scale plant.

Fig. 1. Scale-up Model

Fig. 2. Horizontal Solids Mixing Test Arrangement

(N = 2)
화학공학

1. 실험 장치와 실험 방법

Scale-up에 關連해서 Fig. 1과 같이 여러 셀로 連続함으로서 裝置规模을 扩大하여 Scale-up 하는 方式이 생각된다.

본 연구에서는 Fig. 2와 같이 먼저 2 셀을 連続한 裝置를 사용하여 連続된 連続할 수 있는 Scale-up에 必要한 基礎의 데이터를 얻기 위하여 Actual scale에서 계산하여 그 Guidance를 하였다. 連続화의 구체적인 방법은 간단히 설명하면 다음과 같다.

- 使用한 粉體는 glass粉體로서 60~100mesh, 60~140mesh 및 100~140mesh의 3種의 粒徑의 것을 사용하였다. 600g의 glass粉體를 column의 1, 2兩槽에 各々 同一量 납어 넣고 공기로 전환하였다. Tracer로서는 粉體量의 約 5%의 NaCl粉體(粉體와 같은 粒徑)을 1槽에 投入하여 間歇으로 Shutter를 開閉하여 1槽 및 2槽에서 開口時間에 따라 各々 2g式 sampling 하여 이 混合物의 NaCl含有量을 2% K2Cr2O7溶液을 指示薬로 하여 0.1N AgNO3溶液으로 측정하였다. 開口時間사이에 各槽에서 완全混合이 实現되도록 Shutter를 閉閉하여 充分히 混合을 시켰으며 靜止層高 通過速度比(Dv/D)는 約 1.0으로 해서 实験을 했다.

2. 基礎方程式

Fig. 1과 같이 任意의 셀로 連続하여 連続함으로서 裝置規模을 扩大한 경우 tracer의 投入한 区分(1槽)으로부터 扩大하여 連続한 第2槽 第3槽……第N槽의 tracer의 量이 시간에 따라 变化한다.

- 各槽 내 粉體의 重量을 Mj, 各槽接続된 開口面積을 a0, 單位開口面積당 單位時間당의 粉體의 移動速度를 Wj, 各槽의 Tracer의 分配率를 Zj로 設정하여 粉體混雑에 關連한 基礎方程式은 各槽의 tracer의 物質収
\[
-\frac{1}{2} e^{-\frac{1}{2} (5-\sqrt{5}) k b} - \frac{1}{2} e^{-\frac{1}{2} (5+\sqrt{5}) k b} \\
Z_3 = \frac{1}{5} \left[1 + \frac{\sqrt{5} - 1}{2} - e^{-\frac{1}{2} (5-\sqrt{5}) k b} \right] \\
Z_4 = \frac{1}{5} \left[1 + \frac{\sqrt{5} - 1}{2} e^{-\frac{1}{2} (5+\sqrt{5}) k b} \right] \\
+ \frac{\sqrt{5} + 1}{2} e^{-\frac{1}{2} (5-\sqrt{5}) k b} \\
Z_5 = \frac{1}{5} \left[1 + \frac{5 - \sqrt{5}}{4} - e^{-\frac{1}{2} (3-\sqrt{5}) k b} \right] \\
+ \frac{5 - \sqrt{5}}{4} e^{-\frac{1}{2} (3+\sqrt{5}) k b} \\
\]

実験データ의解析例

混合速度를 \(N=2 \) 인 경우에 대해서 실験적으로 측정한 \(W \) 値을 이용할 수 있으면 scale-up 법으로 임의크기의 액체에 있어서 외 속의 값은 정의한 것으로 측정할 수가 앞으로 갖다. 여기서는 \(N=2 \)의 경우의 实験 데이터의解析例를 두기로 한다. (2)式을 변형하여

\[
W = \frac{M}{2a_0} \ln \frac{1}{2\xi - 1} \\
\xi = Z_1(\beta)/Z_1(\alpha) \\
1 - Z_2(\beta)/Z_1(\alpha)
\]

의 關係를 얻을 수 있다. 式 (6)을 利用하여 本實験의 条件으로서

\begin{align*}
 a_0 &= 3.14 \times 10^{-4} \quad \text{(m²)} \\
 M &= 0.3 \quad \text{(kg)}
\end{align*}

을 代入하여 \(W \) 을 实験結果로부터 算出할 수가 있다.

Table 1. A sample data of experiments

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(V_1)</th>
<th>(V_2)</th>
<th>(\xi_1)</th>
<th>(\xi_2)</th>
<th>(1 - \xi_2)</th>
<th>(u/u_m = 1.4) (cm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>22.1</td>
<td>1.4</td>
<td>0.97</td>
<td>0.061</td>
<td>0.939</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>20.5</td>
<td>2.8</td>
<td>0.89</td>
<td>0.122</td>
<td>0.878</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>19.3</td>
<td>4.7</td>
<td>0.84</td>
<td>0.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>16.2</td>
<td>7.5</td>
<td>0.71</td>
<td>0.325</td>
<td>0.675</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>13</td>
<td>9</td>
<td>0.57</td>
<td>0.39</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>11.5</td>
<td>10.9</td>
<td>0.3</td>
<td>0.45</td>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>

이것을 plot 하면 Fig. 3과 같다.

Fig. 3에서 볼 수 있는 것과 같이 实測値이 散在하

<table>
<thead>
<tr>
<th>100~140mesh</th>
<th>60~140mesh</th>
<th>60~100mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u/u_m = 1.4) cm/sec</td>
<td>(u/u_m = 2.5) cm/sec</td>
<td>(u/u_m = 3.3) cm/sec</td>
</tr>
<tr>
<td>(u)</td>
<td>(W)</td>
<td>(u)</td>
</tr>
<tr>
<td>7.0</td>
<td>2.0</td>
<td>7.5</td>
</tr>
<tr>
<td>9.8</td>
<td>4.0</td>
<td>12.5</td>
</tr>
<tr>
<td>14</td>
<td>-8.0</td>
<td>18.7</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>36</td>
<td>35</td>
<td>37.5</td>
</tr>
</tbody>
</table>

Table 2. Experimental results

Fig. 4. Plot of \(W \) vs \(\theta \)

이 理論式에 依한 \(W \)의 값을 各點에 對하여 呈出하여 그 平均値을 얻을 수도 있으나, 實際問題로서는 \(\xi \) 對 \(\theta \)의 圖面에서 實測値의 分布에 關한 一般的 觀察에 依해 parameter \(k \) 내지 \(W(=kM/W) \) 화 合하여는 것
이 便利하다.

本實験條件下의 \(\xi \) 對 \(\theta \)의 plot 如 Fig. 4와 같다.

Table 1의 列로 부터는 \(W=4.0(\text{kgm}^{-2}\text{sec}^{-1}) \) 업을 알

第2卷 第2호 (89)
수 있다. sburgh이 다른 3종의 glass powder를 사용하여
먼녀나면의 평균속도의 동일성을 알아보기 위한 실험의
결과로 하여 그 결과를 실험한 방법으로, 분석한 결과는
Table 2에 표시한다.

실験結果의 검토
(1) Zenz의 전자보도에 의해 고속도의 동일성이 있다고 보고한
남상은 보도의 관로 dòng의 관 전류에서 \(u_u_m \)의 동일성
이 있다고 보고했다.

![Fig. 5. W vs. \(u_u_m \)](image)

\[(Re)_p = \frac{d \mu_p}{\mu} \]

![Fig. 6. W vs (Re)_p](image)

![Fig. 7. W vs. u](image)

이상의 보고를 상시 검토하기 위하여, 고속도의 동일성의
동일성을 Table 2의 결과를 이용하여 Fig. 5, 6, 7과 같이
검토했다. Fig. 5는 고속도의 동일성 \(u_u_m \)을 보고한 것이고
Fig. 6은 고속도의 동일성 \((Re)_p \)를 보고한 것이다. 또한
Fig. 7은 고속도의 동일성 \(u \)을 보고한 것이다.

여기서 이 실험조건에서의 동일성의 추정을 하여 보면
물성의 자동화도 및 공정의 동일성은 동일도의 속도에 동일하다고
알 수 있으며, 이 동일성에서의 동일도가 24(cm/sec) 이상에
동일도로 만들 수 있다. 다음과 같은 결과를 얻었다.

\[
\begin{align*}
& u > u_*, \quad W = a \exp(bu) \\
& u > u_*, \quad W = \text{Const}
\end{align*}
\]

\[
\begin{align*}
& a = 0.75, \quad b = 0.16, \quad u_* = 24 \text{ (cm/sec)}
\end{align*}
\]

![Fig. 8. Z vs k\(\theta \) (N=2)](image)
（2）$\frac{D_{kF}}{\mu_F}$ または $\frac{D_{TF}}{\mu_F}$ が 850, 1420 附近で折増しているのは 混合速度が 装置の構造の因子に
依存することを示しているのが 図のながらみるかである。

（3）Scale-up を 基に参考に 図を 作成した 2), 3),
4), 5) 式の モデルを Z に対する $k\theta$ を 計算したか Fig. 8,
9, 10, 11 で。

即 N=2, 3, 4, 5 の場合 各槽 使用体積 $M = 0.3$
(kg), \(W = 20 \text{(kgm}^{-2}\text{sec}^{-1}) \), \(a_0 = 3.14 \times 10^{-4} \)이며, 최종
종의 tracer의 密度 \(Z_0 \) 가 像 혼합 \(Z_0 = 0.9 \)의 95%가
되는 시간 \(t_{0.95} \) 를 알아보면 다음과 같다.

| Table 3. A example of calculation |
|---|---|---|---|
| \(N \) | \(k \cdot t_{0.95} \) | \(\theta_{0.95} \) (sec) |
| | | \(k=0.02 \) | \(k=0.04 \) | \(k=0.06 \) |
| 2 | 1.56 | 78 | 39 | 26 |
| 3 | 3.26 | 163 | 82 | 55 |
| 4 | 6.1 | 305 | 153 | 102 |
| 5 | 8.9 | 445 | 223 | 148 |

\(k = \frac{W_a}{M} = \frac{[20][3.14 \times 10^{-4}]}{[0.3]} = 0.02 \)

위에서 정의된 \(\theta_{0.95} \)는 設備들이 提供한 方式에 依하여 Scale-up된 流動化裝置의 粒子間混合速度에 表現하는
尺度로서 利用될 수 있으며, 基礎實驗 (\(N = 2 \))의 结果와
Fig. 8, 9, 10, 11로 부터 所與條件下에 指定된 \(\theta_{0.95} \)
을 實現하기에 必要한 開孔面積等을 決定할 수도 있다.

Table 3을 \(N \) 및 \(\theta_{0.95} \)로 plot 하여 Fig. 12와 같이
된다.

Fig. 12로부터 \(k = \frac{W_a}{M} \)에서 \(W \)와 \(M \)이 一定하
면 所與時間에 各槽에의 完全混合을 依한 隔壁開孔面積
을 알 수 있다.

결論

1) \(N = 2 \)의 경우에 依하여 實験結果로부터 glass powder의
粒子間混合速度에 關한 實験式을 얻었다.

(7)式 参照

2) 各槽의 完全混合에 假定하고 同一操作條件下에서
混合槽數 \(N \)을 3 이상으로 하여 流動化裝置를 scale-up할 때 各
槽間의 隔壁開孔面積을 決定하는 方法에 依하여 記述한다.

(Fig. 12 参照)

3) 實験의 依 粒子間混合速度を 決定함에 있어서 使
用한 流動化裝置의 構造因子, 開孔의 位置, 面積等에 關한 検討가 不充分하며 特に tracer로서 使用
한 食糧粒子의 選択基準等에 關한 検討가 不足하다
이것들에 関해서는 他으로 實験하여 報告키로 한다.

記號 説明

\(u \) : 速度 (cm sec\(^{-1}\))
\(Z_j \) : 各槽의 tracer 分配律
\(a_0 \) : 隔壁の 開孔面積 (m\(^2\))
\(W \) : 粒子混合速度 (kg m\(^{-2}\text{sec}^{-1}\))
\(M_j \) : 各槽의 粉體質量 (kg)
\(\theta \) : 開孔時間慣性值 (sec)
\(D_R \) : 箬部の 直徑 (cm)
\(D_h \) : 第1槽の 相当直徑 (cm)
\(d_p \) : 粉體粒子の 直徑 (cm)
\(\rho_f \) : 空気の 密度 (g cm\(^{-3}\))
\(\mu_f \) : 空気の 粘度 (g cm\(^{-1}\text{sec}^{-1}\))
\(N \) : 擬數

【附記】

B槽에서 A槽내에 95%混合을 實現하면 이때의
開孔面積 \(a_0' \)는 圖式的인 方法으로써 다음과 같이
求할 수 있다.

\[a_0' = a_0\left(\frac{A'}{A}\right) \]

Fig. 12, \(\theta_{0.95} \) vs. \(N \)

화학공학
參考文獻

3) Brötz, W., Chem. Ing. Tech., 24, 60 (1952)
4) 南鴻: 入門反應工學 229 (1963) 工學圖書株式會社
5) 日本特許(1963年7月31日出題)
7) 南鴻, 大山, 石川, 日本化學工學協會, 第28年會研究発表講演要旨 242 (1964)

分 會

株式會社 三益社

第一製紙株式會社

韓國貿易株式會社

優東紡織工業株式會社

大韓紡織株式會社

東洋紡織工業株式會社

大韓紡織株式會社

海林化學株式會社

東洋製紙株式會社

新製製紙株式會社

峨山產業株式會社

三豊製紙株式會社

第一毛織工業株式會社

東洋紡織工業株式會社

韓國貿易株式會社

特別會員

高 一 龍
朴 元 峰
金 宗 勝
李 熙 哲
尹 錫 吳
金 永 生
金 丙 部
李 輝 堤
朴 善 東
姜 容 求
許 純
鄭 雨 昌

圈 體 會 員

東洋紡織工業株式會社