Adsorptive Removal of TBM and THT Using Ion-exchanged NaY Zeolites

Gap Soon Jung, Seok Hee Lee, Jae Kee Cheon, Jae Wook Choe,† and Hee Chul Woo§

Department of Applied Chemical Engineering and †Department of Safety Engineering
Pukyong National University
San 100 Yongdang-dong, Nam-gu, Busan 608-739, Korea

(Received for review February 25, 2009; Revision received March 23, 2009; Accepted March 24, 2009)

Abstract: Adsorptive removal of tetrahydrothiophene (THT) and tert-butylmercaptan (TBM) that were widely used sulfur odorants in pipeline natural gas was studied using various ion-exchanged NaY zeolites at ambient temperature and atmospheric pressure. In order to improve the adsorption ability, ion exchange was performed on NaY zeolites with alkali metal cations of Li⁺, Na⁺, K⁺ and transition metal cations of Cu²⁺, Ni²⁺, Co²⁺, Ag⁺. Among the adsorbents tested, Cu-NaY and Ag-NaY showed good adsorption capacities for THT and TBM. These good behaviors of removal of sulfur compound for Cu-NaY and Ag-NaY zeolites probably was influenced by their acidity. The adsorption capacity for THT and TBM on the best adsorbent Cu-Nay-0.5, which was ion exchanged with 0.5 M copper nitrate solution, was 1.85 and 0.78 mmol-S/g at breakthrough, respectively. It was the best sulfur capacity so far in removing organic sulfur compounds from fuel gas by adsorption on zeolites. While the desorption activation energy of TBM on the Cu-Nay-0.5 was higher than NaY zeolite, the difference of THT desorption activation energy between two zeolites was comparatively small.

Key words: Adsorbent, Odorant, Adsorptive desulfurization, Zeolite

To whom correspondence should be addressed.
E-mail: woohec@pknu.ac.kr
1. 서론

연료전자는 연료(수소, 메탄올, 석탄, 원연가스 등)의 화학 에너지를 전기화학반응에 의해 전기에너지로 직접 변환하는 발전 장치로서 기존의 발전기술보다는 효율성이 높으며 환경오염을 가리키고 공해물질 배출을 줄이면서 전기와 열을 동시에 생산하는 기술로서 발전효율이 높고, 환경 친화적이며, 폐열도 이용할 수 있는 등 오늘날 중대한 이슈로 대두되고 있는 에너지 문제로, 환경문제의 해결에 공헌할 수 있는 이상적인 발전장치로서 그 사용과 보급 확대에 큰 기회를 모아가고 있다[1]. 연료전자를 이용한 발전에 필요한 수소는 일반적으로 원연가스, 에히옥시가스(liquefied petroleum gas, LPG)와 같은 연료가스와 알코올, 가스류 등을 개발하여 만들게 되는데[2][4]. 대개 도시가스와 같은 연료가스는 콜스마스(COS), H2S 등의 자연 발생 가능한 화학물질과 가스로 가스가 녹는 부여를 쉽게 탈거하기 위해 인공적으로 만들어 황성분 즉, 부제천에서 TBM(ter-butylmercurcapran), EM (ethylmercurcapran)과 같은 메르캅탄을 비롯해 THT(tetrahydrothiophene), DMS (dimethylsulfoxide) 등과 같은 유기 화합물들이 혼합 형태로 포함되어 있는 것으로 알려져 있다. 우리나라의 경우 도시가스 에는 TBM과 HTH가 3.7의 비율로 4~7ppm 포함되어 있다.

일반적으로 화북분은 탈화수소를 개발하여 외부 연료전지형 수소를 얻는 일반화 공정에서 저항 제거기니거나 혹은 극장용 방전을 한다. 그 이유는 화북분에 의한 수소 수질을 위한 탈화수소 계절기 측량(Ru, Ni 계)과 수소가스전환방응 측량(Fe, Cu, Zn 계)과 같은 일원의 공정에서 포함된 측량들은 현실적 기준으로 측량의 내구성이 저하되어 더욱이나 연료전자의 액체(Pt/C)는 피둑당하게 되어 그 성능이 달라지는 것으로 일반적으로 가정할 연료전지에 의한 수소전학질 연료전지의 경우의 수소 전환 농도는 0.1ppm 내외 10ppb 수준으로 알려져 있으며, 화북분의 농도를 낮추기 위해서는 연료가스의 개발 전 측량 기술 과거를 고려할 수 있으며, 후자의 경우에는 개발측량의 피득이 높아지므로 이를 막기 위해서는 다른 공정에 우선하여 화북분의 제거하는 전자의 경우가 보다 신중하게 되기 때문에 따로 제거하는 것이 필요하다. 이 경우 화북분의 제거를 위한 흡착제들은 열 발생 및 연료 프로세스와 함께 같은 물ات의 내부에 놓여 장치에 담겨 있어서 그 물질의 크기는 보다 작고 높은 온도에서 조직되어야 하며 이를 위한 수소 흡착제의 개발이 있어야 하며 조사된 것으로 사료된다.

현재까지 알려진 연료전가스와 LPG 같은 연료가스 중의 화상 분를 제거하기 위한 수소 흡착제들은 Y형, β형의 흡착바이트로 은(Ag) 성분은 이온화환원의 경우 수치내화된 성분이 흡착안전한 조건에서도 수소 흡착용량을 가진다고 보고되었다[5][6]. 일반적으로 가설 Bertland과 같은 벡터 수송용 연료전자는 수분을 비롯하여 녹화물과 같은 산소화합물과 녹소를 포함되어 있어 흡착제의 활성온은 흡착바이트의 활성에 따라서 달라질 수 있다. 이를 보다 자세히 알기 위해서는 다음과 같은 바이트가 적용되어 있어 친수성의 성질을 가지는 흡착바이트의 활성을 이용한다[7].

이에 본 연구에서는 소형의 가정용 연료전지시스템에 응용될 고분자막 연료전지의 수소원으로서 도시가스 연료를 적용하여 가스 소각에 포함되어있는 부적이 성분을 삼용 또는 약간 높은 온도에 흡착을 통한 제지를 목적으로 하고 있다. 이를 위하여 기존 연구 발달에서 수수한 흡착성능을 가진 것으로 알려진 제 용량데이터 및 나노세공분자체 물질들에 대한 흡착성능과 폐기물 및 보다 수수한 흡착용량을 갖고자 하였으며, 연료전지에 의한 가족흡착량(breakthrough capacity)에 의해 평가하였다.

2. 실험

2.1. 흡착제 제조

본 연구에 적용이 전해제로는 상업적으로 사용되는 Zeolyst 사의 NaY 세포라(unittested, 4.5)를 사용하였다. 이들 물질에 의하여 표면의 산-염기적 특성을 변화시키기로 Li2, K2, Fe2, Co2, Ni2, Cu2, Ag2의 금속 양이온으로 각각 원소수에서 300°C에서 5시간 동안 증가시키며 액화한 알코올 용액으로 인하여 제거한 후 증가수를 이용하여 세척 후에 수용소의 pH가 약 7 정도가 되도록 세척하고, 80°C에서 화학로 판정하였으며, Ag로 이온화환원된 NaY의 경우 두온도 분리로 상온에서 건조하였다. 그러고 Cu로 이온화환원된 세포라의 경우 Cu의 담막을 조절하기 위해 Cu(NO3)2 용액의 농도를 0.05, 0.1, 0.5, 1.0 M으로 변화시켜 원소수에서 동일한 방법으로 이온화환 후 세척, 건조시켰다. 이온화환된 세포라등은 세척과 건조과정을 거친 후 공기를 사용하여 450°C에서 5시간씩 소성하여 최종 흡착용량에 적용하였다. 0.5 M의 Cu(NO3)2 용액으로 이온화환된 경우, Cu-Na-Y 0.5로 표기하였다.

2.2. NH3 및 CO2 흡착 실험

제로 카지 양이온으로 이온화환된 M-NaY의 산 및 염기 특 성을 알아보고자 NH3 및 CO2의 흡수활성(temperature programmed desorption, TPD)실험을 수행하였다. 흡착의 분석은 전자광학분석기(quadrupole mass spectrometer, Hiden Co. HPR-20)로 수행하였다. CO2-TPD의 경우, 흡착체 약 40 mg을 50 ml/min의 흡발기계로 500°C에서 1시간 동안 전처리 후 상온으로 납각하고, 4% CO2 (H2 balance)를 30°C에서 30분간 동안 흡착시켰다. 그리고 30°C에서 흡발기계로 파거(purge)시킨 후 30~500°C까지 10℃/min의 속도로 흡착하여 흡착시켰다. NH3-TPD의 경우 흡착체 약 30 mg을 60 ml/min의 흡발기계로 500°C에서 1시간 동안 전처리 후 110°C로 납각하고, NH3를 흡착체로 30분간 흡착시킨 후 전처리로 제거시켜 100~500°C까지 10℃/min의 속도로 흡착하여 흡착시켰다.

2.3. 흡착 탐침 실험

제조된 흡착체 시료들을 상온 흡착체로서의 성능을 알아보기 위해 연속적으로 일정 농도의 흡착제를 흡착하여 처리할 때의 방호흡작용을 측정하기 위한 고장형 연속흡착법을 이용하여 흡착량을 측정하였다. 흡착량치는 외경 1/4 inch U형 형태의 quartz 변경기에 약 20 mg의 흡착제를 흡착한 후 유량 50 ml/min의 흡발기계로 450°C에서 2시간 동안 전처리하여 흡착제에 물리적으로 약
2.4. 결보기 활성화에너지 실험

$$\log \left(\frac{T_m^2}{\beta} \right) = \frac{E'}{2.303 R T_m} + \log \left(\frac{E'}{R} \right)$$

여기에서 T_m은 탈착작용의 최고 대응 freel에서의 온도(K)를 나타내며, β는 승온속도 (K/min), E'는 결보기 활성화에너지 (kJ/mol), R은 기체 상수, A'는 절수 사용자를 표현한 것이다. 따라서 T_m이 β의 함수로서 측정될 경우, E'를 $\log (T_m^2/\beta)$와 1/T_m의 관계를 나타낸 그래프로부터 결정할 수 있다.

NaY, Cu-NaY-0.5 활착제의 THT와 TBM의 탈착에 의한 결보기 활성화에너지의 알아보기 실험 및 결보기 활성화에너지에 대한 연구, THT 100ppm, TBM 99.6ppm의 탈착작용을 Rigas Co로부터 구입하여 사용하였다. 활착제 약 20mg을 50mL/min의 헬륨 기체로 600°C에서 4시간 동안 전 처리 후, 50mg으로 낮추고 THT와 TBM을 30°C에서 짜란 활착시켰다. 그 다음에 30°C에서 헬륨기체로 2시간 후, 30-500°C까지 5, 10, 15, 20°C/분으로 승온속도를 달리하여 탈착 후 $\log (T_m^2/\beta)$와 1/T_m에 대하여 그래프를 나타내어 결보기 활성화에너지의 구하였다.

3. 결과 및 고찰

3.1. NH₃ 및 CO₂ TPD 결과

여러 가지 암이온으로 이온교환을 한 NaY의 산-염기적 특성을 알아보기 전, NH₃ 및 CO₂ TPD를 수행하였으며, 그 결과를 각각 Figure 2와 3에 나타내었다. NH₃-TPD로 부터 얻어진 산
Table 1. TBM and THT adsorption capacities on cation-exchanged Y zeolite

<table>
<thead>
<tr>
<th>Sample</th>
<th>Breakthrough time (min)</th>
<th>Amount of sulfur compound adsorbed (mmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TBM</td>
<td>THT</td>
</tr>
<tr>
<td>NaY</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>Li-NaY</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>K-NaY</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>Fe-NaY</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>Co-NaY</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>Ni-NaY</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>Cu-NaY</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>Ag-NaY</td>
<td>60</td>
<td>105</td>
</tr>
</tbody>
</table>

Note: Adsorbent 2.0 mg, 30°C (TBM: 60 ppm, THT: 137.4 ppm), CH₄ balance

Table 2. Effect of Cu loading in NaY

<table>
<thead>
<tr>
<th>Sample</th>
<th>Breakthrough time (min)</th>
<th>Amount of sulfur compound adsorbed (mmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TBM</td>
<td>THT</td>
</tr>
<tr>
<td>NaY</td>
<td>180</td>
<td>240</td>
</tr>
<tr>
<td>Co-NaY-0.05</td>
<td>165</td>
<td>180</td>
</tr>
<tr>
<td>Co-NaY-0.1</td>
<td>165</td>
<td>180</td>
</tr>
<tr>
<td>Co-NaY-0.3</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>Co-NaY-1.0</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

Note: Adsorbent 2.0 mg, 30°C (TBM: 29.0 ppm, THT: 69.7 ppm), CH₄ balance
나 TBM과의 경쟁흡착에서 보다 유리하게 작동함으로서 결국 TBM이 어느 순간 흡착이 일어나는 경쟁적 흡착이 이루어질 수 있다. Cu-NaY-0.5에서는 NaY의 경우와 달리 TBM이 THT에 의해 밀려나지 않고, 흡착체와 THT의 상호인력작용과 흡착체와 TBM의 상호인력작용이 비슷하여 THT와 TBM이 서로 흡착을 서로 공유하여 동시 흡착이 일어나는 것으로 보인다.

TPD 결과 NaY의 THT, TBM의 담착온도는 90℃와 270℃ 부근으로 서로 독립한 온도 부근에서 담착을 보이고, 담착된 면적을 상대적으로 비교했을 때 TBM의 담착면적은 THT의 담착면적의 20%로 THT와 TBM의 흡착사이트가 서로 같은 것으로 사료되어지만, 처음에는 동시 흡착이 일어나지만 THT의 흡착세기가 TBM 보다 강하여 결국에는 THT가 대부분 흡착되는 경쟁적 흡착이 일어남을 확인할 수 있었다.

반면, NH₃-TPD 결과 서로 다른 두 개의 흡착 사이트를 가진 Cu-NaY-0.5에서는 THT와 TBM의 담착온도는 각각 305℃와 149℃로 서로 다른 온도 부근에서 담착함을 보이고 담착된 면적을 상대적으로 비교했을 때 TBM의 담착면적은 THT의 담착면적의 57% 정도로 THT와 TBM의 흡착사이트가 서로 달라 선택적으로 흡착하는 것으로 사료되어진다.

![Figure 4. Breakthrough curves of TBM and THT on (a) NaY and (b) Cu-NaY-0.5.](image)

3.3. 결보기 활성화에너지 결과

NaY, Cu-NaY-0.5의 결보기 활성화에너지치를 알아보자 THT가 100ppm (CH₄ balance)이고 TBM이 99.6ppm (CH₄ balance)이 독사가스를 30℃에서포화흡착조건 후 30℃에서 펄프기계로 끄시켰다. 그 후 30~500℃까지 5, 10, 15, 20℃/min으로 승온속도를 달리 하여 결보기 활성화에너지를 구하였다. NaY의 결보기 활성화에너지를 Figure 4, Cu-NaY-0.5의 결보기 활성화에너지를 Figure 7에 나타내었다.

NaY의 경우 THT, TBM의 결보기활성화에너지는 각각 39.1 kJ/mol, 31.8 kJ/mol 으로 THT가 TBM의 3배 수준이 THT의 경우에 비해 약 20% 정도 높게 측정되었으며, Cu-NaY-0.5의 경우 THT, TBM의 결보기활성화에너지는 각각 40.8 kJ/mol, 39.4 kJ/mol로 THT, TBM의 결보기활성화에너지는 비슷하게 측정되었다. 그리고 THT에 대하여 NaY, Cu-NaY-0.5의 결보기활성화에너지는 일정한 반면, TBM에 대한 NaY, Cu-NaY-0.5의 결보기활성화에너지는 NaY의 결보기활성화에너지보다 Cu-NaY-0.5의 결보기활성화에너지가 23% 정도 증가하였다. 그 결과 0.5 M의 Cu(NO₃)₂ 용액으로 이온교환된 Cu-NaY-0.5의 흡착체에서는 NaY의 흡착결과에서 나타나는 일정시간까지는 흡착량을 서로 경쟁흡착을 하면서 비어 있는 흡착량을 점유하지만 포화점에 다다르면 THT의 결보기활성화에너지는 TBM의 결보기활성...
화에너지보다 높아 TBM의 경쟁흡착에서 보다 강하게 흡착함으로써 TBM이 밀려나는 현상이 관찰되지 않았으며, 오히려 THT, TBM의 검보기활성화에너지가 서로 비슷하여 THT와 동시에 흡착하는 현상이 관찰되었다.

4. 결론

첨단가스로 이루어진 도시가스를 연료전지의 수소 원으로 사용하기 위해서는 그 속에 포함되어진 THT와 TBM으로 대표되는 부착제의 제거가 필수적이다. 따라서 본 연구는 도시가스와 유사한 모사가스를 사용하여 보다 파포흡착력이 뛰어난 흡착제를 찾고자 하였으며, 흡착성을 조사하여 다음과 같은 결론을 얻었다.

(1) NaY 표면의 산-염기적 특성을 변화시키고자 Li⁺, K⁺, Fe⁺⁺, Co⁺⁺, Ni⁺⁺, Cu⁺⁺, Ag⁺로 이온교환한 결과 Ag⁺ 이온교환이 내원된 NaY에서 높은 과포흡착량을 나타내었으며, THT에 대하여 1.61 mmol-Sg⁻¹의 과포흡착량을 보였다. NH₄⁺TPD 결과와 비교해 볼 때 Ag⁺ 이온교환된 세올리아트의 증가

(2) NaY, Cu-NaY-0.5의 검보기활성화에너지는 THT에 대하여 각각 39.1 kJ/mol, 40.8 kJ/mol로 비슷하게 측정되었고, TBM에 대하여 각각 31.8 kJ/mol, 39.4 kJ/mol로 Cu-NaY-0.5 에서 23% 정도 높게 측정되었다.

(3) NaY의 일정시간까지는 THT와 TBM 모두 흡착을 잘 하는 것을 알 수 있었으며, 일정시간 경과할 경우 THT는 계속 흡착이 이루어진 반면, TBM은 투과가 목록되었다. 이는 THT의 검보기활성화에너지는 TBM의 검보기활성화에너지보다 높아 TBM과의 경쟁흡착에서 보다 유리하게 작용함으로써 결국 어느 순간 TBM의 밀착이 얻어지는 것으로 보인다. Cu-NaY-0.5의 경우 NaY와 달리 THT와 TBM의 검보기활성화에너지가 서로 비슷하여 TBM이 THT에 의해 밀려나지 않고, THT, TBM이 서로 흡착점을 공유하며 동시에 흡착이 일어나는 것으로 보인다.

감사

이 연구는 2005년도 한국과학기술재단 지원 연구(KRF-2005-042-D00075) 및 교육과학기술부와 한국산업기술재단의 지원 혜선연구협약사업으로 수행되었으며, 이에 감사드립니다.

참고문헌
