Direct Preparation of Dichloropropanol from Glycerol over Acetin Catalyst

Sun Ho Song, Dong Ryul Park, Sung Yul Woo,*, Won Seob Song,†
Myong Suk Kwon,† and In Kyu Song*

School of Chemical and Biological Engineering, Seoul National University
599 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea

†Samsung Fine Chemicals Corporation
190 Yeochun-dong, Nam-gu, Ulsan 680-090, Korea

(Received for review February 6, 2009; Revision received March 3, 2009; Accepted March 5, 2009)

Abstract: Solvent-free direct preparation of dichloropropanol (DCP) from glycerol (by-product of bio-diesel production) and hydrochloric acid gas was carried out over acetin catalyst in a gas-liquid batch reactor. For this purpose, acetin mixture and triacetin were used as a homogeneous acetin catalyst. Performance in the acetin-catalyzed reaction was compared to that in the non-catalytic reaction under the same reaction conditions (110°C, 3 bar, 3 h). Conversion of glycerol in the acetin-catalyzed reactions was ca. 3% higher than that in the non-catalytic reaction, and selectivity for dichloropropanol in the acetin-catalyzed reactions was ca. 50% higher than that in the non-catalytic reaction. It was also revealed that the catalytic performance of triacetin was ca. 2% higher than that of acetin mixture.

Key words: Glycerol, Dichloropropanol, Acetin catalyst, Hydrochloric acid

* To whom correspondence should be addressed.
E-mail: inksong@snu.ac.kr
1. 서 론

현재 바이오디젤은 세계적 차원에서 경쟁적으로 개발되어 생산되고 있으며, 우리나라도도 혁발한 연구가 진행되고 있다[1]. 바이오디젤을 생산하는 과정에서 부산물로 약 10% 정도에 해당하는 다양한 금괴성이 생겨나고 있으나, 수 Been 비해 공급이 과잉으로 이루어져 금괴성의 가치는 저격으로 하락하고 있으며, 이에 따라 금괴성의 부가가치를 높이기 위한 연구(예: 금괴성로부터 아이크로메이션 제조 및 금괴성로부터 프로판디올 제조)가 진행되고 있다[2-6]. 그 중에서 금괴성 부가가치가 높은 디클로로프로판올은 전환시키는 공정이 많은 주목을 받고 있다[7-9].

디클로로프로판올(dichloropropanol, DCP)은 에피클로로히드린(epichlorohydrin)을 제조하기 위한 원료로서 주로 사용된다. 현재 시장에 공급되는 대부분의 디클로로프로판올은 Figure 1에 나타낸 바와 같이 프로필렌의 고온 압화와 반응으로 아릴클로로라이드(allyl chloride)를 제조하고 이후 과량의 공업용수를 사용하여 이어질로라이드와 염소를 다시 반응시키는 2단계 공법으로 제조되고 있다[10]. 프로필렌은 가격상승과 함께 수급이 불안한 상황에 있으며, 기존의 상용공정에서는 다 양한 배수와 폐기물이 발생하고, 1단계 제조공정에 따르다한 초기 투자비용으로 인해 프로필렌으로부터 디클로로프로판올을 제조하는 공정의 신중성은 매우 어려운 상황이다.

이에 따라 최근에는 Figure 1에 나타낸 바와 같이 금괴성용을 직접 염소화시키는 1단계 제조공정에 의해 디클로로프로판올을 제조하는 공정이 경제성을 확보하게 되었다[7-9]. 이 공정에서의 경제의 금괴성용을 부가가치 이용하여 공장과 달리, 이에 따라 공정 및 환경적으로 투자비용은 적게 둔다는 장점이 있다. 또한 기존의 프로필렌으로부터 2단계 반응을 거쳐 디클로로프로판올을 제조하는 방법과 달리, 에피클로로히드린을 제조하기 위한 반응원료인 디클로로프로판올은 바이오

다른 부산물인 금괴성용을 1단계 공정에 의해 직접 제조함으로써 공정을 보다 환경친화적으로 전환시킬 수 있다. 특히 바이오디젤 제조과정의 부산물인 금괴성용을 사용하고, 디클로로프로판올 제조를 위해 사용 반응단계를 2단계에서 1단계로 줄일 수 있는 효율적인 촉매개발을 통해 원자 절감 및 에너지 절약이 가능하다. 따라서 환경적, 경제적, 투자비 면에서 유리한 금괴성용을 이용하여 디클로로프로판올을 직접 제조하는 촉매 공정을 개발할 경우 디 클로로프로판올을 이용하는 관련 제품의 생산에 있어서 경제적 우위 선점과 함께 기술경쟁력 확보할 수 있다.

본 연구에서는 무연배 상생의 회소식반응기에서 얻은 아세탄(acetic) 촉매를 이용하여 금괴성용과 염화수소 가스트로부터 디클로로프로판올을 직접 제조하는 촉매반응을 수행하였으며, 아세탄의 촉매반응성 및 무연배반응에서의 활성과 서로 비교하였다. 이를 통해 금괴성용로부터 디클로로프로판올을 직접 제조하는데 효율적인 균일계 촉매를 개발하고자 하였다.

2. 실험

2.1. 시료 및 촉매

금괴성용(> 99.5%)과 염화수소 가스(99.7%)는 각각 Sigma-Aldrich Chemicals와 Tsurumi Soda에서 구매하였다. 아세탄 촉매의 제조는 Figure 2와 같다. 아세탄은 금괴성 용과 반응을 통해 제조되는데, 아세탄의 구조는 금괴성용의 OH 대신에 CH₃COO 기가 붙어 있는 형태로, CH₃COO 기가 1개 붙어 있는 것을 모노아세탄(monoacetin), 2개 붙어 있는 것을 디아세탄(diacetin), 3개 붙어 있는 것을 트리아세탄(triacetin)이라고 부른다[11,12]. 본 연구에서는 아세탄 혼합물(acetin mixture) 및 트리아세탄을 촉매로 사용하였다. 트리아세탄: 트리아세탄의 구성비가 두:1:1일 때 아세탄 혼합물은 신생생물학 학에서 제공받았으며, 트리아세탄은 Sigma-Aldrich Chemicals에서 구입하여 사용하였다.

![Figure 1. Conventional and proposed processes for producing dichloropropanol (DCP).](image-url)
2.2. 반응실험

글리세롤과 염화수소 가스로부터 디클로로프로판올을 직접 제조하는 반응은 기상-화학 회분식 반응기(200 ml)에서 수행되었으며, 반응장치 개략도는 Figure 3과 같다. 본 반응에서는 염
화수소 가스 사용에 안전을 기하기 위해 가스라인을 내식성이 강한 Hastelloy C로 구성하였으며, 반응기 내부는 내식성이 강한 Teflon을 사용하여 반응 장치를 제작하였다. 또한 담 튜브를 이용하여 염화수소 가스가 글리세롤 안에서 고르게 배포될 수 있도록 하였다. 반응을 용매를 전혀 사용하지 않는 무용매 상태
하에서 진행되었다. 반응물의 글리세롤(100 g)과 측매인 아세틴(5 g)을 반응기에 대입한 후 임시로 흐리주었다. 이후, 반응기를
진공 처리하여 반응기 내부의 수분, 공기 및 젖은 물을 제거하여 글리세롤과 측매만이 반응에 관여할 수 있도록 분위기를 조성하
았다. 반응기 온도를 110℃로 옮긴 후, 교반(900 RPM)과 함께 염화수소 가스를 일정 압력(3 bar)으로 주입함으로써 반응을 개
시하였다. 이때, 반응온도는 당상수를 이용하여 반응시간(3시
간) 동안 일정하게 유지되도록 하였다. 반응 종료 후 반응기를
상온으로 냉각시킨 후 천조를 이용하여 반응기 안에 남아있는 염화수소 가스를 완전히 제거한 뒤 생성물을 얻었다. 또한 아세
틴 측매의 반응성성을 비교하기 위해 동일한 반응조건에서 두축
매 상태로 반응을 수행하였다. 측상물의 분석은 DB-WAX capillary column(25m x 0.25mm)와 5970Ⅱ를 이용하여 분석하였다. 본 반응에서 글리세롤 전환율 및 생산
물 선택도는 다음의 Eq. 1 및 Eq. 2에 의해 각각 계산하였다.

\[
\text{Conversion of glycerol} \ (% \text{ of product formed} \times 100) = \frac{\text{Moles of glycerol reacted}}{\text{Moles of glycerol supplied}} \times 100 \tag{1}
\]

\[
\text{Selectivity for product} \ (% \text{ of product formed}) = \frac{\text{Moles of product formed}}{\text{Moles of glycerol reacted}} \times 100 \tag{2}
\]

3. 결과 및 고찰

무측매 상태에서 글리세롤과 염화수소 가스로부터 디클로로
프로판올을 직접 제조한 이전의 보고와는 다르게, 무측매 상태
하에서도 글리세롤의 염소화반응에 의해 디클로로프로판올이
상당량 생성되며, 본 연구에서 도입된 동일한 반응조건에서 교
반속도가 600 RPM 미만에서는 글리세롤과 염화수소 가스 사이
의 물질전달 방향으로 인해 RPM이 증가할수록 디클로로프
로판올의 수율이 증가하지만, 600 RPM 이상에서는 물질전달
방향을 반전하고 일정한 디클로로프로판올의 수율을 보이
는 것으로 나타났다. 따라서 본 연구에서는 글리세롤과 염화수
소 가스 사이의 물질전달 방향을 최소화하기 위해 교반속
도를 충분히 크게 하여 900 RPM으로 고정한 후 아세틴 측매
의 반응성을 알아보았다.

무측매 상태에서 글리세롤과 염화수소 가스로부터 글리세롤
을 직접 제조한 이전의 연구에 의하면, 반응온도와 반응압력
이 증가함에 따라 디클로로프로판올의 수율이 증가하고 모노
클로로프로판올의 수율이 감소하며, 반응시간에 따라 염소
수소 가스에 의한 글리세롤의 염소화반응은 Figure 4의 그림

Figure 2. Schematic diagram of acetin formation from glycerol and acetic acid.

Figure 3. Schematic diagram of reaction apparatus.
Figure 4. Reaction pathway for the chlorination of glycerol utilizing hydrochloric acid gas.

전행되는 것으로 나타났다. 즉, 글리세릴 염소화반응은 글리세롤 → 모노클로로프로판디올(MCPD) → 디클로로프로판올(DCP) → 트리클로로프로판올(TCP)으로 순차적으로 진행된다. 실험 반응실험 결과, 반응 초기에는 모노클로로프로판디올이 주로 생성되나 반응시간이 증가함에 따라 디클로로프로판올의 생성량이 증가하고, 반응시간이 20시간 이상 경과하면 트리클로로프로판올 5% 정도 생성되었다. 결과적으로, 비교적 빠른 시간 동안 (5시간 이내) 반응을 수행할 경우, 모노클로로프로판디올과 디클로로프로판올이 생성물의 대부분을 차지한다. 따라서, 본 연구에서는 트리클로로프로판올 생성량이 없는 환경 한 반응조건인 110℃, 3bar, 3시간 조건하에서 아세틴 혼합물에 이용하여 반응을 수행함으로써 무색백색 투명 디클로로프로판올 생성량을 증가시키고자 의도하였다.

아세틴 혼합물 이용하여 글리세롤과 염화수소가스트로부터 디클로로프로판올의 직접 제조에 대한 촉매반응성을 Figure 5와 같다. 반응은 무용해 하에서 900 RPM, 110℃, 3bar, 3시간 조건하에서 수행되었으며, 아세틴 혼합물과 트리아세틴 촉매를 사용하여 글리세롤의 전환율 및 모노클로로프로판디올과 디클로로프로판올의 선택도를 실험하였다. 반응실험결과, 두 촉매 모두의 경우 글리세롤의 전환율은 무색백색 반응보다 3% 증가하였으나, 디클로로프로판올의 선택도는 50%로 큰 폭 증가하였으며, 상대적으로 모노클로로프로판디올의 선택도는 극히 감소하는 것으로 나타났다. 또한, 아세틴 혼합물과 트리아세틴 촉매의 반응온도와 반응시간에 의한 디클로로프로판올의 선택도가 아세틴 혼합물에 의한 디클로로프로판올의 선택도보다 5% 정도 높은 것을 확인하였고, 이로부터 아세틴 중에서도 CH₃COO 기름 많이 가지고 있는 트리아세틴 촉매가 상대적으로 CH₃COO 기름 적게 가지고 있는 아세틴 혼합물보다 본 반응에 보다 긍정적으로 작용함을 알 수 있었다. 결과적으로, 금일계 촉매인 아세틴 혼합물 촉매와 트리아세틴 촉매를 사용하여 글리세롤과 염화수소가스로부터 디클로로프로판올을 직접 제조한 결과 무색백색 반응보다 50% 가량 더 높은 디클로로프로판올 선택도를 보이 아세틴 촉매는 글리세롤과 염화수소가스로부터 디클로로프로판올을 직접 제조하는 반응에 매우 효율적인 촉매로 작용하는 것으로 나타났다.

4. 결 론

아세틴 촉매상에서 글리세롤과 염화수소 가스로부터 디클로로프로판올을 직접 제조한 결과, 동일한 조건의 무색백색 반응에 비해 글리세롤의 전환율은 3% 증가하였고, 목표로하는 디클로로프로판올의 선택도는 약 50% 가량 증가되었음을 확인하였다. 상대적으로 반응중간제인 모노클로로프로판디올의 선택도는 무색백색 반응에 비해 60% 감소하는 것으로 나타났다. 또한 아세틴 혼합물과 트리아세틴 촉매의 반응성능을 비교해본 결과, CH₃COO 기름 많이 가지고 있는 트리아세틴 촉매가 아세틴 혼합물 촉매보다 디클로로프로판올을 제조하는데 더 긍정적으로 작용하는 것을 확인할 수 있었다. 이처럼 아세틴 촉매는 글리세롤과 염화수소 가스로부터 디클로로프로판올을 직접 제조하는 반응에 매우 효율적인 촉매로 작용하였다.

감 사

본 연구는 한국생산기술연구원이 지원하는 정정생산기술개발사업의 일환으로 수행되었다(2007-A027-0).