Aluminum 합금소재의 알칼리에칭 공정으로 발생한 Smut 제거를 위한 무질산 혼합산용액 개발

추수태¹, 최상교²

¹ 국립49-863 경기도 용인시 백암면 고안리 633-2 고등기술연구원 플랜트엔지니어링센터 청정환경연구팀
² 우790-330 경상북도 포항시 남구 효자동 산 32번지 포항산업과학연구원 환경·에너지연구센터
환경연구팀

(접수일자 : 2003. 4. 28 / 채택일자 : 2003. 5. 30)

Development of Nitric Acid Free Desmut Solution for the Aluminum Alloy in Alkaline Etching and Acid Desmut Processes

See-Tae Choo¹, Sang Kyo Choi²

¹ Clean Engineering Research Team (CERT), Plant Engineering Center, Institute for Advanced Engineering (IAE), 633-2 Kori, Baeamnyeong, Yongin 449-863, Republic of Korea
² Environment Research Team, Environmental & Energy Research Center, Research Institute of Industrial Science and Technology (RIST), 32 Hojo-dong, Namgu, Pohang 790-330, Republic of Korea

요 약

금속가공 공정에서 알루미늄 합금소재의 알칼리에칭 후 표면에 발생한 스마트(Smut)를 제거하기 위해 무질산 디스마트(Nitric acid-free desmut) 용액을 개발하였다. 과산화수소(2%), 물산(0.5%) 및 황산(10%)을 혼합한 산화에이 NaOH 수용액에 처리한 Al6061 및 Al5052 규격의 알루미늄 합금 소재에 대한 디스마트 제거효과가 5% 질산수용액의 사용량 경우와 유사하게 관찰되었다. 스마트 제거를 위한 혼합 산용액 처리 전·후 표면을 SEM-EPMA 분석을 통해 확인하였다.

ABSTRACT : A novel nitric acid-free desmut solution has been developed to remove smut, which is produced from a NaOH etching, on the surface of aluminum alloy metal in metal surface treatment processes. Comparing with the performance of 5% HNO₃ desmut solution, the mixed acid solution containing 2% H₂O₂, 0.5% HF, and 10% H₂SO₄ shows the same effect of smut removal for aluminum alloy samples of Al6061 and Al5052. To examine the surface alterations of the aluminum samples, in addition, the surface analysis is carried out with scanning electron microscopy (SEM) and electron probe microanalysis (EPMA).

keywords: mixed acid solution, desmut, total nitrogen, Al alloy metal, nitric acid free, plating process

* corresponding author : stchoo@iae.re.kr

청정기술 제9권 제2호
1. 서 론

패수 발생의 대표적인 사업장으로 알려진 도금 공정의 경우 알루미늄 혹은 Stainless steel (STS) 소재의 안전한 도금표면 형성과 표면 활성화를 위해 액정공정을 거쳐게 되는데, 이때, 스테인레스강은 질산 (HNO₃) 및 불산 (H₂SO₄)을 함유한 용액에서 예정을 하고, 알루미늄 소재에 대해서는 알칼리 용액에서 예정한다. 특히, 알루미늄 소재에서는 알칼리 예정 후 표면에 함금성분인 Mg, Cu, Si, Mn 등의 성분이 도제의 예정속도와 차이가 나서 표면에 흉색의 스무트 (Smut)를 형성하게 되고 이의 제거를 위해 고도도 질산을 사용하고 있다. 따라서 이들 공정으로 인하여 도금공정에서는 총 질소 (Total nitrogen, T-N)의 건뇨에서 폐수의 질산성 질소 (NO₃⁻, NO₂⁻)의 함량이 높게 분포하고 있다. 현제까지 패수 중에 포함된 질산성 질소를 제거하기 위해 이온교환법, 물을 이용한 기술, 생물학적 탈성법 등 다양한 방법이 제시되고 있으며 [3] . 이들 방법은 폐수의 성강 및 요구하는 유전조건에 따라 선택할 수 있다. 그러나 대부분의 도금사장등은 기업규모가 멋지기 때문에 적용기술의 경제성 및 효과적인 처리 효율 문제와 함께 작업장 및 처리시설에 대한 공간적 제약에 기인하여 기술적, 영문이 막히지 않은 실질이다.

이는 같은 문제의 심각성에 맞추어 사후처리 기술적 접근이라는 시각을 바꾸어 최근에 제기된 청정생산기술 (Cleaner production technology)의 개념 [2]을 도입할 필요가 있으며, 질산성 질소의 문제해결을 위해 질산수용을 억제 혹은 질산대체 시각을 적용할 필요성이 있다. 질산은 스테인레스강, 알루미늄, 구리 등 제품의 표면처리로 도제속성이 없으므로 미려한 표면을 얻을 수 있어 다양한 공정에 사용되고 있으며, 특히 알루미늄 소재의 알칼리 예정 후 표면에 발생한 흉색의 스무트를 제거하기 위하여 사용되는 화합물로서 함금의 종류에 관계없이 가장 우수한 제거효과를 갖는 것으로 알려져 왔다. [3] 분 연구는 여러 가지 질산수용 공정 중 도금공정에서 가장 많이 질산을 사용하는 알루미늄소재의 디스무트 (Desmut) 공정의 질산 대체를 위하여 알루미늄 함금소재를 대상으로 표면에 발생한 스무트 제거를 위해 질산을 사 용하였을 경우와 동일한 효과를 보여줄 수 있는 산용액을 개발하고자 하였다. 이를 위해 과산화수소 (H₂O₂)를 기본 물성으로 하여 2-3 종의 산성 시약을 추가로 혼합하여 적용해 보았으며 발생한 스무트가 효과적으로 제거되는 것을 SEM (Scanning Electron Microscope) - EPMA (Electron Probe Microanalyzer)를 사용하여 확인하였다.

2. 실험방법

본 연구에서 사용한 알루미늄환급 시약은 5052 및 6061 소재를 대상으로 실시하였으며, 이들 소재들은 국내에서 생산, 판매되는 함금규격의 제품으로 구한 것이다. 실험을 위해서 5052 및 6061소재는 1 mm 두께에 가로 세로 각각 200 mm, 30 mm 크기로 실험의 목적에 맞게 절단하여 사용하였다. 금속 표면에 스무트 방해를 위해 3% NaOH 수용액을 50 °C에서 1 min 동안 처리를 하였으며, 이렇게 스무트 가 형성된 시점을 절단과 본 연구에서 제조된 과산화수소 혼합산 용액에 절단하여 스무트 제거 성능을 비교 분석하였다. 본 연구에서 사용한 시약은 질산 (60% 시약급, 산천화학), 불산 (55% 시약급, 물산화학), 과산화수소 (50% 공업용 (산업계포 함), 한솔케미언스)를 사용하였으며, 용액 처리 후 소재 표면에 복합화학적 변화를 분석하기 위해서 SEM-EPMA (JBL-840A) 분석을 통해 확인하였다.

실현의 전방은 먼저 질산이 금속표면에 산화제 막을 안정하게 형성할 수 있는 성질을 데춰하기 위하여 과산화수소를 기본적으로 사용하였으며, 금속 용해 후 과산화수소의 균일한 분해반응을 방지하기 위하여 특별히 고정화된 과산화수소 (H₂O₂)를 이용하였다. 이 안정화 과산화수소는 절은 20g/L에서 과산화수소의 반감기가 2시간 이상인 안정제가 포함된 것이다. 여기에 스무트 성분을 용해시킬 수 있는 산성분위기를 만들기 위하여 황산과 불산의 혼합을 우선 적용하였다. 이는 일반의 경우 금속의 용해속도 는 매우 빠르지만, 퍼팅 (Fitting)을 쉽게 형성하고 자극성 가스를 유발하여 용해관리가 어렵기 때문에 선정에서 배제하였다. 황산 단독 사용의 경우에는 용도를 높게 하지 않으면 금속 용해속도가 너무 높으므로...
3. 결과 및 고찰

Figure 1은 3% NaOH 수용액으로 1 min 동안 표면처리한 Al6061 소재에 대해 다양한 산염액에 대해서 스마트 제거 결과를 보여주고 있는 그림이다. Figure 1(a)는 NaOH 수용액 1 min 동안 액정 처리한 Al6061 소재의 표면에 스마트가 발생하여 흐석으로 변화된 모습을 보여주고 있다. 이들 스마트는 제거하기 위해 사용한 산염액은 질산을 1 min(b), 2 min(c) 침식한 경우와 황산(d), 황산+면원화성제(e, f), 불산+황산+산화수소(g)의 혼합산염액을 사용하였으며 이들 용액을 사용하여 침식한 결과를 Figure 1(b)-(g)에서 보여주고 있다. 질산을 사용한 (c)의 경우, 침식한 소재의 표면에서 거의 대부분의 스마트가 제거된 것을 확인할 수 있으며 이러한 결과는 실험실 조립장에서의 실험 조건과 동일한 것으로 이해될 수 있다. 그런데, Figure 1(d), (e) 및 (f)의 황산 또는 점착제로 구성한 용액의 경우는 Figure 1(c)의 유사한 결과를 얻을 수 없었지만, Figure 1(g)와 같이 황산(10%), 불산(0.5%), 과산화수소(2%)의 혼합 산염액에서는 질산처리와 유사한 스마트 제거 성능을 보여주었다. 이러한 결과는 5052소재에서도 동일한 효과를 본 연구에서 얻을 수 있었다. 결국, 본 연구에서 이들 혼합 산염액의 스마트를 제거하기 위해 질산과 동일한 효과를 보여주는 것이라고 판단하였다.

소재의 표면에 스마트를 발생시키기 위해 NaOH 액정처리를 하면, Al5052 및 Al6061소재의 표면에는 여러 개의 홈(Pit hole)이 발생하는데, 현미경에 의해 표면에 부착되어 있는 형상을 땅하며 주 무늬의 굴곡과 상관없이 표면에 다소 평탄화가 진행된다. 사용한 소재 대부분이 유사하게 이러한 현상이 관찰되었는데, 본 연구에서는 이를 관찰하기 위해서 Figure 2처럼 1 min 동안 NaOH를 처리한 Al6061 소재에 대해 SEM-EPMA를 분석하였다. 소재의 표면에 흐석, 점은색, 그리고 피복 hole 지점 등이 관찰되었으며, EPMA 결과에서 처럼 침식지점은 Mn, Fe 성분이 많이 분포된 것으로 나타났으며, Si도 관찰되어 스마트의 주요 부지인 것으로 판단된다. 그러나 점은색 부분과 흐석은 모두 거의 순수한 알루미늄 및 주인을 알 수 있다.

Figure 3은 Figure 2에서 표면 표면에 발생한 스마트를 제거하기 위해서 5% 질산수용액에 처리한 Al6061 소재의 표면을 보여주고 있다. 표면에 완전히 제거되었으며, 에칭된 홈(hole)이 잘 나타나고 황색의 결정들이 거의 없어진 것을 확인할 수 있다. 질산에 0.5 min 동안 침식한 후에, 원은 침착간격에도 스마트가 효과적으로 제거될 수 있음을 알 수 있다. 점은색 결정은 Mn, Fe 성분이 일부 제거되었다.

Figure 4 및 Figure 5는 각각 6061, 5052소재에 대해서 NaOH 액정처리 후 표면에 발생한 스마트를 제거하기 위해서 질산을 사용하지 않은 새로운 디스마트(Desmutter)용액을 개발하였다. 과산화수소(2%), 불산(0.5%) 및 황산(10%)을 혼합한 산염액이 Al5052 및 Al6061소재에 질산과 유사하게 스마트를 제거할 수 있음을 SEM-EPMA 분석으로 확인하였으며, 이러한 결과들은 도금산업용에 중점적 문제 해결에 큰 도움이 될 수 있을 것으로 판단된다.

4. 결론

본 연구는 알루미늄 합금소재의 알칼리 액정 표면에 발생하는 스마트를 제거하기 위해서 질산을 사용하지 않은 새로운 디스마트(Desmutter)용액을 개발하였다. 과산화수소(2%), 불산(0.5%) 및 황산(10%)을 혼합한 산염액이 Al5052 및 Al6061소재에 질산과 유사하게 스마트를 제거할 수 있음을 SEM-EPMA 분석으로 확인하였으며, 이러한 결과들은 도금산업용에 중점적 문제 해결에 큰 도움이 될 수 있을 것으로 판단된다.
사 사

본 연구는 국가정부생산지원센터(KNCPC)에서 주관하는 정비생산기술 이전화산업 연구비 지원으로 추진된 결과의 일부에 해당하며, 이에 감사의 드립니다.

인용문헌

4. 최성교, 김미주, 전희동: 과산화수소의 안정화 방법, 한국특허 출원 2002-0083681.

List of Figure Captions

Fig. 1. Al6061 samples treated with various chemicals after NaOH etching: (a) NaOH (1min), (b) HNO₃ (1 min), (c) HNO₃ (2 min), (d) H₂SO₄, (e) H₂SO₄ + additive 1, (f) H₂SO₄ + additive 2, and (g) H₂O₂ + H₂SO₄ + HF.

Fig. 2. SEM (a) and EPMA (b, c, and d) analysis of Al6061 treated with NaOH solution: (b) for spectrum 1 position, (c) for spectrum 2 position, and (d) for spectrum 3 position on the SEM image (a).
Fig. 3. SEM (a) and EPMA (b and c) analysis of Al6061 treated with nitric acid solution on the sample of Figure 2; (b) for spectrum 1 position and (c) for spectrum 2 on the SEM image (a).

Fig. 4. SEM images of Al6061 of (a) after treatment with NaOH solution and (b) after treatment of H2O2 mixed acid on sample (a).

Fig. 5. SEM images of Al5052 of (a) after treatment with NaOH solution and (b) after treatment of H2O2 mixed acid on sample (a).