고로슬레그 미분말을 사용한 콘크리트 2차 제품의
고강도화 메커니즘

김정만 · 조성현* · 이대경**

공주대학교 건축공학과
공주대학교 차원계응용 신소재 연구센터*
공주대학교 대학원 건축공학과**

High Strengthening Mechanism by Blast Furnace Slag in Concrete Based Products

Jin-Man Kim · Sung-Hyun Cho* · Dae-Kyung Lee**
Department of Architectural Engineering, Kongju National University
RRC/NMR, Kongju National University*
Department of Architectural Engineering, Kongju National University**

요 약

고로슬레그를 콘크리트의 결합제 또는 혼화재료의 사용은 활성화되어 있으나, 수량을 극히 제한적으로 사용하는 콘크리트 2차제품에 적용한 예는 극히 적다. 본 연구는 고로슬레그의 재활용 용도를 다양화하기 위한 것으로 시멘트의 일부를 고로슬레그로 대체하여 제조한 콘크리트 2차제품의 강도 증진 메커니즘을 분석한 것이다.

연구의 결과 압축강도 400kg/cm² 이상의 고강도 스페이서를 개발시 고로슬레그의 사용은 매우 효과적인 혼화재료라는 것을 확인하였다. 고로슬레그의 사용에 의한 압축강도 증가의 주원 메커니즘은 콘크리트 2차제품의 전체 입도 분포가 보다 흰밀성도에 가깝게 분포하는 흰밀성도이론과 포중단계 재료가 시멘트 수화물인 Ca(OH)₂와 상온에서 장기간에 걸쳐 일으키는 포중단 반응인 것을 확인할 수 있었다.

ABSTRACT : Whereas commonly used to make concrete having rich water contents as binder or mineral admixture, blast furnace slag has been rarely applied to manufacture in concrete based products having poor water contents. This study, for the multi-recycling of blast furnace slag, is to analyze strength enhancement mechanism of concrete based products using blast furnace slag.

The results of this study are following. We found that blast furnace slag is very effective mineral admixture to manufacture high strength spacer having over 400kg/cm² in compressive strength. Also, enhancement of strength by blast-furnace slag are responsible to densified grading and pozzolanic reaction.
1. 서 론

고로슬래그는 설판을 제조하는 과정에 발생하는 산업부산물로서 년간 약 860만ton 정도의 박대한 양이 발생하고 있어 그 처리 및 재사용을 위한 노력이 매우 요구되는 폐기물이다. 외란의 연구에 의하면 고로슬래그를 콘크리트용 혼합재로 사용할 경우 경제성 향상, 수화물 저감, 화학적 저장성의 증대 및 장래 수경성에 의한 고강도재의 쏟진 등이 있는 것으로 보고되고 있다.[1-4]

그러나 고로슬래그에 관련된 연구의 대부분은 현장 타실 콘크리트의 성능개선에 초점을 맞추어 있으며, 콘크리트 2차 제품 특히 본 연구에서 대상으로 하고 있는 단위수량을 극도로 낮춘 건식배합의 콘크리트 2차제품에 적용한 시도는 많지 않다. 본 연구는 콘크리트의 난리 건식배합의 콘크리트 2차제품은 기본적으로 수량이 매우 부족하기 때문에 수량이 많은 콘크리트제외기에는 다른 수화물과 강도발현 특성을 보이게 된다. 일반 콘크리트의 경우에는 강도 발현이 시멘트의 수화반응에 의존하게 되지만, 건식배합의 콘크리트는 시멘트의 수화반응 외에 성형시의 조건 및 사용재료의입도차이가 큰 영향을 주게 된다.[2-3]

또한, 고로슬래그의 포괄적 반응에 의한 강도증진은 상온에서 양상할 경우 재량 28일 이후에 기대할 수 있는 것으로 알려져 있으나, 건설 2차 제품과 같이 고온 주장르시에 대한 연구결과는 마련된 실험이었다.

본 연구에서 대상으로 하는 스페이서는 건설공사에서 철근의 피복손해를 유치하기 위해 사용되는 것으로 건설 보도리지인 복합재료 선판 강화용 실험을 통한 제조되는 콘크리트 2차제품이다.

콘크리트 스페이서에 관한 품질 기준 및 표준 시방이 제정되는 않았으나 스페이서의 격판효과가 구체의 콘크리트의 강도는 주변의 콘크리트와 유사한 값을 사용하는 것이 바람직하므로 최근 구조재 콘크리트가 고강도화 되는 경향이 있으며 스페이서도 고강도화 해야 할 필요성이 제기되고 있다.

그러므로, 본 연구에서는 건식배합의 콘크리트 2차제품인 스페이서의 고강도화, 경제성 향상 및 환경친화적 제품을 제조하기 위하여 산업재절감의 고로슬래그를 적용하고, 고로슬래그의 최적 배합조건을 도출하여 압축강도 400kgf/cm² 이상의 고강도 스페이서를 개발하고, 또한 고로슬래그의 사용에 의한 건식배합 콘크리트 2차제품의 강도 증진 위점은 과학적으로 규명하기 위한 것이다.

2. 이 론

2.1 고로슬래그의 화학성분

철강슬래그의 대부분인 고로슬래그는 고로에서 첨을 제조할 때 첨물성이나 코크스 등의 화합물에 존재하는 SiO₂와 Al₂O₃ 등이 1350~1550℃의 고온에서 석화와 반응하여 생성되며, 비증이 첨보다 낮아 첨화가 발달한다. 여기서 분리된 용융슬래그를 고온에서 희석아시서 또는 금속셔거 고화된 것을 분해하여 재사용하게 된다.

고로슬래그 공급단은 Table 1에 나타난 바와 같이 CaO, SiO₂, Al₂O₃이므로 포틀랜드 시멘트와 매우 유사하지만 Fe₂O₃가 거의 없으며, CaO가 적다. 일반적인 성분방식은 매우 낮으며, 주성분의 함유량은 SiO₂ 28~38%, Al₂O₃ 8~18%, CaO 30~45%, MgO 16% 이하이다[1-5].

<table>
<thead>
<tr>
<th>Type</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>TIO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Fe₂O₃</th>
<th>SO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>20.7</td>
<td>52</td>
<td>62.4</td>
<td>4.7</td>
<td>0.3</td>
<td>0.1</td>
<td>1.0</td>
<td>3.1</td>
<td>2.4</td>
</tr>
<tr>
<td>BS</td>
<td>33.1</td>
<td>13.9</td>
<td>42.5</td>
<td>6.9</td>
<td>1.3</td>
<td>0.20</td>
<td>0.31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FA</td>
<td>59.0</td>
<td>19.8</td>
<td>23</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>4.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>

OPC : Ordinary portland cement BS : Blast furnace slag FA : Fly ash

2.2 고로슬래그의 화학반응

고로슬래그 미봉면은 상온에서 시멘트 배포시와 같이, 유리질의 SiO₂와 Al₂O₃가 시멘트의 수화반응에 의해 생성된 Ca(OH)₂와 결합하여 생성되어 각각의 콘크리트 재료를 수화물로써 (3CaO·2SiO₂+3H₂O, 3CaO·Al₂O₃+6H₂O, 3CaO·Al₂O₃·3CaSO₄+32H₂O)을 생성한다. 이것을 포괄한 반응이라고 하며, 이 반응은 물과 잘 용해되는 Ca(OH)₂를 소비하
여 시멘트강화체의 구조형성을 담당하는 C-S-H 점을 증가시킨다. 따라서 고로슬래그미분말을 시멘트 모서
터에 첨가한 경우 시멘트강화체의 강도향상과 수밀성의 증대를 기대할 수 있게 된다.

그러나 보통 포름렌드 시멘트에 고로슬래그 미
분말을 혼합한 시멘트 모서터로의 압축강도 발현성
상을 나타낼 Fig 1에서 알 수 있는 바와 같이 고로
슬래그에 의한 포름란 반응은 매우 서서히 진행되기
때문에 그 효과는 채용 28일 이후의 장기 채용에서
나타나게 된다. [1-4-5]

3. 실험계획 및 방법

3.1 실험계획

1) 고로슬래그를 이용한 고강도 스페이시 개발
본 연구에서는 산업폐기물인 고로슬래그를 사용
하여 고강도 스페이시를 제조하기 위하여 Table 2와
같이 고로슬래그 대체율에 따른 스페이시의 압축강
도 변화를 검토하였다. 고로슬래그의 대체율을 0, 20,
30, 40(%)로 하여 시험체를 제작한 후 증기압력(80
℃)을 실시하였다. 압축강도는 채용 1, 3, 7, 28(일)
에 측정하였다.

2) 고로슬래그에 의한 고강도와 매가너질 분석
고로슬래그에 의한 스페이시의 강도증진 원인을
알아보기 위한 것으로 Table 3과 같이 공극촉전 효
과, 최밀입도 효과, 포름란 반응 효과에 대하여 검토
하였다.

공극촉전 효과를 알아보기 위한 실험에서는 고
로슬래그가 미세한 분말이기 때문에 시멘트 매트릭
스(cement matrix)의 공극을 충전함으로써 강도를 증
진시킨는지를 검토하기 위한 것으로 고로슬래그와
비슷한 분말도를 가지고 있지만 포름란 반응을 하
는 물질이나 포름란 반응이 전혀 없는 석회를 비교대상으로 하였다. 환해재의 대체율은 30(%)로 동
일하게 하였으며, 양방법은 20℃ 기전양재와 80℃
증기압력의 2수준으로 하여 압축강도를 비교 검토하
였다.

최밀입도분포 효과는 고로슬래그의 사용에 의한
스페이시의 강도 증진 원인이 고로슬래그의 입도가
전체 스페이시의 입도분포를 보다 최밀입도에 근사
하도록 하였기 때문에 나타난 결과를 검토하기 위 원
으로, 고로슬래그 대체율을 0, 30(%)로 하고

Table 3. The experimental design to analyze high
strength effects by BS

<table>
<thead>
<tr>
<th>Experimental Factors</th>
<th>Levels</th>
<th>Test methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filler Effect</td>
<td>Replacement proportion of SS, BS, and FA</td>
<td>0, 30%</td>
</tr>
<tr>
<td>Curing temperature</td>
<td>20, 80℃</td>
<td></td>
</tr>
<tr>
<td>Optimum Grading Effect</td>
<td>Replacement proportion of BS</td>
<td>0, 30%</td>
</tr>
<tr>
<td>Water/Binder</td>
<td>25~33%</td>
<td>· Test for compaction</td>
</tr>
<tr>
<td>Pozzolanic Reactivity Effect</td>
<td>Replacement proportion of BS</td>
<td>0, 30%</td>
</tr>
<tr>
<td>Curing temperature</td>
<td>20, 80℃</td>
<td>· DT-TGA</td>
</tr>
</tbody>
</table>

OPC : Ordinary portland cement |
BS : Blast furnace slag |
SS : Stone sludge |
FA : Fly ash
3.2 사용재료

시멘트는 국내 5사의 보통 포탈랜드 시멘트를 사용하였으며 KS L 5201 1종 규격품으로 그 물리적 성질은 Table 4와 같다.

고르슬래그는 황성도 지수가 양호한 국내산 5사의 것을 사용하였으며, 물성은 Table 5와 같다.

물질은 비교적 세밀 진공계인 강포재와 조립 진공계인 부순모래를 혼합하여 사용하였으며 물리적 성질은 Table 6과 같다, Fig 2은 모래의 입도분포 곡선을 나타낸 것이다.

![Fig-2 Grading curve of fine aggregate](image)

3.3 실험방법

1) 시험체 제작

시험체는 Fig 3과 같이 건비밀 3분 후에 가수한 다음 4분간 비번 후, Photo 1의 진동압성형기를 이용하여 5×5×5cm의 크기로 제작하였다.

![Fig 3. Order of making specimens](image)

2) 시험체 양성

시험체의 양성은 스페이서의 공장제작 조건에 맞추기 위하여 Fig 4과 같이 천천히 양성 4시간, 중기 양성 20시간을 총합 후 건조상태에서 시험제품까지 보관하였다. 중기양성시 운도 상승속도는 10℃/h로 하고 80℃에 달라진 후에는 양성조온에서 시험하였다.

![Photo 1. Brick casting machine](image)

CLEAN TECHNOLOGY Vol.7 No.2
3) 압축강도 측정

압축강도 측정은 KS L 5105의 포르타크 압축강도 시험방법에 의하여 각 소정의 재료에서 실시하였다.

4) 최밀입도분포 시험

최밀입도분포를 검토하기 위하여 KS F 2312의 홈의 다양 시험법상을 이용하였다. 안전망이 10cm의 모던에 시료를 3회에 나누어 부여한 후, 무게 2.5kg의 레미로 25회 담긴 후 단위용적중량을 구하였다.

또한, 시료를 구성하는 각 재료의 비중을 이용하여 평균비중을 산출하고, 그 비중으로 습윤밀도를 나누어 산출을 구하였다.

5) X-ray화합식 및 열용량분석

시멘트의 수화작성물인 Ca(OH)$_2$와 고로슬래그 미분말과의 포합판 반응성을 검토하기 위하여 X-ray 화합식과 시차열분석(DT-TGA)을 실시하여 Ca(OH)$_2$ 량을 정량적으로 분석하였다.

4. 실험결과 및 분석

4.1 고로슬래그를 이용한 고강도 스펙이어 개발

고로슬래그의 대체율별 재량에 따른 압축강도를 나타내고 있는 Table 7 및 Fig 5에서 알 수 있는 바와 같이 모든 재량에서 고로슬래그 대체율 30%까지는 고로슬래그의 대체율의 증가에 따라 압축강도도 증가하고 있으며, 대체율 40%의 경우에는 대체율 30%보다는 낮지만 대체율 20%보다 높은 압축

Table 7. Test results of compressive strength according to replacement proportion of BS

<table>
<thead>
<tr>
<th>Replacement proportion of BS</th>
<th>Compressive strength (kgf/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 day</td>
</tr>
<tr>
<td>0</td>
<td>339(100)</td>
</tr>
<tr>
<td>20</td>
<td>364(100)</td>
</tr>
<tr>
<td>30</td>
<td>413(100)</td>
</tr>
<tr>
<td>40</td>
<td>407(100)</td>
</tr>
</tbody>
</table>

() : percentage

Fig 5. Variations of compressive strength according to replacement proportion of BS

강도를 보이고 있다.

또한 고로슬래그 대체율 30~40%에서 증기양생 적후인 재량 1일에 압축강도 400kgf/cm2 이상의 고강도를 발현하며, 재량 후 1일 이내에 고강도 제품을 충합할 수 있는 가능성을 제시하고 있다.

재량 1일에 대한 강도 증진율을 살펴보면, 시멘트뿐만 사용한 고로슬래그 대체율 0%에서는 재량 1일에 대한 28일 압축강도의 비율이 115%이지만, 대체율 30%에서는 121%, 대체율 40%에서는 119%를 보이고 있고 재량강도에 있어서도 500kgf/cm2에 근접한 고강도를 보이고 있다. 이러한, 경향은 표 3에 나타난 고로슬래그의 활성도 지수 및 그림 1에 나타난 경량과 다르게 초기 재량부터 강도 증진을 보이고 있다.

4.2 고로슬래그의 의한 고강도화 메커니즘 분석

앞의 실험 결과 고로슬래그를 사용한 경우 압축강도의 증진이 현저하게 나타나고 있는데 이의 원인

청정기술 제7권 제2호
울 구명하기 위하여 미분말에 의한 공극응전효과, 최
밀도분포 효과 및 포르란 반응 효과라는 3가지 관
점에서 실험적으로 분석하였다.

1) 공극응전 효과

실험결과를 나타내고 있는 Fig 6에서 알 수 있
는 바와 같이 양생온도 20℃의 경우 재량 3일까지는
시멘트만을 결합제로 사용한 경우가 가장 높은 강도
를 보이고 있으나 재량 7일에는 고로슬레그를 사용
한 경우가 높은 강도를 보이고 있다. 증기양조를 의
미하는 양생온도 80℃의 경우에는 재량에 관계없이
고로슬레그가 가장 높은 강도를 보이고 있다.

또한, 장기재량에 있어서 포르란 반응에 의한
압축강도의 증진을 기대할 수 있는 재료로 알려진
플라이데시를 사용한 경우에는 재량 및 양생온도에
상관없이 모든 경우에 낮은 강도를 보이고 있으며,

![Fig 6. Variations of compressive strength according to types of mineral admixture and curing temperature](image1)

이러한 특성상점은 재료의 포르란 반응에 의한
압축강도의 증진을 기대할 수 있는 재료로 알려진
플라이데시를 사용한 경우에 대해서도 나머지 강도
의 개선을 보이지만 시멘트만을 사용한 경우에 비해
는 낮은 강도를 보이고 있다.

![Fig 7. Variations of unit weight according to W/B](image2)

![Fig 8. Variations of solid volum according to W/B](image3)

![Fig 9. Variations of compressive strength according to replacement proportion of BS](image4)

![Fig 10. Relation of compressive strength and solid volume](image5)

CLEAN TECHNOLOGY Vol.7 No.2
3가지 혼화제조의 정확한 입도분포를 고려하지 않아 명확한 결론을 도출하기는 어렵지만, 이상의 실험결과에 의하면, 고로슬래그의 사용에 의한 강도증진은 비분말의 의한 공극강화효과뿐만으로 설명하기 어려우며, 다른 요인들이 강도증진에 기여한 것으로 사료된다.

2) 최밀입도 분포 효과
고로슬래그의 사용에 의한 스페이서의 강도 증진 원인은 고로슬래그의 입도가 전체 스페이서의 입도분포를 보다 최밀입도에 근사하도록 분포되어 나타난 결과인지를 검토하기 위하여 결합제로서 섬프레이트만을 사용한 경우와 고로슬래그와 시멘트를 함께 사용한 경우에 대하여 다짐실험을 실시하였다.
다짐실험은 KS F 2312의 화학 실험방법에 준하여 수량을 변화시켜 각각의 동량의 변화를 측정하는 방법을 사용하였으며, 실험은 비중을 고려하여 간단한 이론상의 배합중량에 대한 다짐실험을 실시한 실험의 실정중량의 비로 계산하였다.
물결합체비에 따른 단위용량중량의 경우 Fig. 7에서 알 수 있는 바와 같이 고로슬래그의 비중이 낮은 정도는 분출하고, 고로슬래그를 30% 대체한 경우와 보통 포트랜드시멘트만을 사용한 경우의 단위용량중량의 차이는 거의 보이지 않고 있다.
그러나, Fig. 8에서 보는 바와 같이 물결합체비에 따른 실적이는 고로슬래그를 30% 대체한 경우가 오히려 높게 나타나고 있다. 또한, 물결합체비에 따른 압축강도 변화를 나타낸 Fig. 9에서 보는 바와 같이 고로슬래그를 30% 대체한 경우의 압축강도가 보통 포트랜드 시멘트만을 사용한 경우보다 높게 나타나고 있다.
이와 같이 고로슬래그를 사용한 경우 상대적으로 높은 실적이를 보이는 것은 고로슬래그의 입도가 전체 콘크리트의 입도분포를 보다 더 최밀 입도분포에 근사하도록 작용하였음을 의미하는 것으로 생각된다.
또한 실적이와 압축강도의 관계를 나타낸 Fig. 10에서 알 수 있는 바와 같이 실적이와 압축강도는 비례적인 것으로 나타나고 있어 고로슬래그의 사용에 의한 실적이와 증가는 고로슬래그의 사용에 의한 압축강도의 증진에 크게 기여한 인자로 판단 할 수 있다.

3) 포절란 반응 효과
고로슬래그는 수증기는 없지만 시멘트 수화물인 수산화칼슘(Ca(OH)₂, Portlandite)과 상응해서 경계 단계에서 점차 반응하여 불용성 물질을 생성하는 포절란 반응을 하는 것으로 알려져 있다. 포절란 반응의 활성은 수화성물질인 수산화칼슘의 소비정도를 측정함으로써 결정하게 된다. 이에 본 연구에서는 포절란 반응의 활성을 알아보기 위해 결합제의 종류를 시멘트 단 위 사용한 것과 시멘트와 고로슬래그를 사용한 것에 대하여 XRD분석과 시찰법 분석을 실시하여 수산화칼슘의 변화를 관찰하였다.

Fig. 11은 XRD 분석 결과를 나타낸 것으로 타원으로 표기한 수산화칼슘의 pick intensity가 고로슬래그의 사용에 의한 경우를 나타낸 (c) 및 (d)에서 상대적으로 작은 것으로 나타나고 있다.
XRD 분석 결과는 한 실험에서의 상대적인 값을 나타내는 것이므로 동일한 시료에서의 Alite(CS1)에 대한 상대적인 비율로 표기하는 것이 수산화칼슘의 소비정도를 파악하기 위한 좀 더 명확한 자료로 제공할 것이다. Fig. 12는 동일시료에서 Alite에 대한 Ettringite와 Portlandite의 비율을 나타낸 것으로 기간양성의 경우에는 고로슬래그의 사용에 따른 악화하여 경향을 보이지 않고 있으나 중기양성의 경우에는 고로슬래그를 사용한 경우에 비하여 명확히 Portlandite가 저하된 것을 보이고 있다. 이러한 현상은 시찰법분석(DT-EGA)에 의해 Portlandite의 열중량 감소율은 나타난 Fig. 13에서도 동일하게 나타나고 있다.

이상과 같이 XRD 분석과 중량감소율을 측정한 결과 고로슬래그에 의한 포절란 반응의 활성을 확인 할 수 있었다. 그러므로 시력배합의 콘크리트 2차재료인 스페이서에 있어서도 고로슬래그에 의한 강도 증진은 부분적으로 고로슬래그의 포절란 반응에 의한 것임을 확인할 수 있었다.
 또한, 본 연구의 실험결과 고로슬래그를 대체하여 중기양성의 경우 고로슬래그 사용도 지수 및 그림 1의 결과와 같이 재료 28일 이후에 강도 증진을 보이는 것이 아니라 재료 28일의 초기세정부터 보통 포트랜드 시멘트만 사용한 것보다 높은 압축강도를 보이고 있다. 이는 고온의 중기 양성기
5. 결론

고로슬레이그를 사용한 고강도 스페이서의 개발과 고강도 마이니즘을 분석하기 위한 실험적 연구의 결과 다음과 같은 결론을 얻었다.

1) 산업폐기물인 고로슬레이그 시멘트 중량의 30~40% 대체함으로써 제조 1일에 압축장도가 400kgf/cm² 이상 발현하는 고강도 스페이서를 경제적으로 제조하는 고로슬레이그의 대량처리 기술을 제시하여 고로슬레이그에 의한 환경 오염의 저감에 기여할 수 있을 것으로 사료된다.

2) 고로슬레이그에 의한 공극 중건 효과에 의한 경제의 강도 증진 효과는 명확히 확인할 수 없었다.

3) 다탐시험을 한 결과 고로슬레이그에 의한 스페이서의 압축장도 증진은 부수적으로 고로슬레이그의 입도가 스페이서의 구성재료 전체의 입도분포를 좀 더 최대입도에 근사하도록 작용하였기 때문인 것으로 사료된다.

4) 수량을 적게 사용하여 제조하는 콘크리트 2차재료의 경우에도 80°C 증기양생을 하는 경우 초기재량에서도 고로슬레이그의 포물란 반응이 활성화되어 경제의 강도 증진에 기여하는 것으로 나타났다.

감사의 글

본 연구는 경주대학교 지원 재활용신소재연구센터(RRC/NMR)의 연구비를 지원 받아 수행한 연구 [과제번호 00B12] 결과의 일부이며, 관계자 여러분께 감사의 말씀을 드립니다.

참고 문헌

1. 일본建筑学会 ; 高強スラグ微粉末を用いたコンクリート

2. 篠塚公夫 外3人 ; オートクレープ養生を行った高強度スラグ微粉末混和高強度コンクリートの圧縮強度 コンクリート工学年次論文報告集 Vol. 15, No.1, 1993.

3. 中原泰 外2人 ; セメントスラグ一せつこう系混合セメントの蒸気養生に関する実験 セメント技報 X X I X, 昭50.

6. 콘크리트학회; 최신콘크리트공학, 기문당, 1999.