Room temperature deposition of nickel oxide thin films by chemical bath deposition

*School of Chemical Engineering and Technology, Yeungnam University, Gyeongsan, 712-749.
**Department of Chemical Engineering, Oregon State University, Corvallis, OR 97331

Abstract

Chemical bath deposition (CBD) is an attractive thin film deposition technique for depositing compound semiconductors at low temperature. In this paper, nickel oxide thin films were prepared by CBD from an aqueous solution of NiSO₄, K₂S₂O₇, and ammonia at room temperature. The growth mechanism was studied by quartz crystal microbalance, UV–Vis absorption, and photon correlation spectroscopy. The data indicated the film growth is strongly depending on mixing conditions and accompanied by a homogeneous reaction of particle formation. No film formation could be observed without the addition of persulfate. The growth mechanism is most likely a combination of particle sticking and molecule–by–molecule growth. The obtained thin films have an optical band gap value of 3.5 eV estimated from UV–Vis absorption. The film surface has a sponge–like morphology according to scanning electron microscopy. The as-deposited film contained α-Ni(OH)₂ and was converted to NiO by thermal annealing according to thermogravimetric, X-ray diffraction and X-ray photoelectron spectroscopy analysis.

1. 서 논

NiO는 전자기 송신화물로서 스마트 원도우, 태양열 흡수계, 전지 전극, 그리고 광전자 측량과 같은 다양한 응용분야를 가지고 있다. NiO 박막은 전형적인 p-type 반도체 물질로서 현제까지 열 증착법, 스프레일링, 스프레이 멀럼하여, 충가, 화학증착법, 전기화학적 증착, 그리고 화학적 용액 성장법등 다양한 방법에 의해서 제조되어왔다. 화학적 용액 성장법은 간편하고 저가의 제조단가, 그리고 광범위한 면적의 박막을 제조 할 수 있어 그 연구가 활발히 진행되어지고 있다. 본 연구에서는 화학적 용액 성장법을 이용한 상온에서의 NiO 박막 제조에 대해 연구하였다.

2. 실험

화학적 용액 성장법을 이용한 NiO 박막은 40 ml 1 M nickel sulfate와 30 ml 0.25 M potassium persulfate 그리고 10 ml 암모니아수(28–30% NH₃)를 증류수와 혼합하여 준비된 100 ml 수용액을 250 ml pyrex 비어의 상온에서 증착되어졌다. 준비된 수용액은 5 cm 마그 네틱 바비 이용하여 40 min 동안 200 rpm으로 혼합되어졌으며, 박막 증착에 사용된 기판은 glass slide와 SiO₂의 두께가 1000Å 인 실리콘 웨이퍼를 사용하였다. glass slide 기판은 아세
3. 결과 및 토론

Figure 1은 상온에서 화학적 용액 성장법에 의해 형성되는 백막의 성장 곡선을 QCM을 이용하여 나타내었다. 백막 성장 곡선은 크게 3가지 영역(유도, 성형적 성장, 감소)으로 나타난다. 백막이 형성되기 위한 용도 영역이 상당히 좁고, 성형적 성장영역이 상당히 완만한 것을 통하여 반응은 초기에 대단히 빠르게 막이 성장되며, 반응 속도를 증가시키기 위해 혼합 속도를 증가 시간과 희석의 두께가 두꺼워 지는 것이 아니라 오히려 감소한다는 것을 관찰하였다. 이는 반응 속도가 증가함에 따라 형성된 입자가 백막 표면에 축적 되는 것 보다 형성된 입자끼리 동체되는 속도가 더 빨리 일어나기 때문에 형성된 모든 입자가 백막으로 형성되는 것이 아니고 cluster로 형성되어 침전되는 것이다. 그래서 혼합 속도를 증가시킬 때 따라 최종 형성되는 백막의 두께는 감소하는 것을 확인 하였으며, 200 rpm에서 가장 조절하기 쉽고 안정된 백막을 형성 할 수 있음을 관찰하였다.

Figure 1. Quartz crystal microbalance (QCM) growth rate of NiO films in a solution of 40 ml of 1 M nickel sulfate, 30 ml of 0.25 M potassium persulfate, 10 ml aqueous ammonia (28-30% NH₃), and 20 ml of distilled water at room temperature with different stirring speeds.

이렇게 형성된 백막은 scanning electron microscopy(SEM)과 X-ray diffraction(XRD)를 이용하여 백막의 표면적 특성과 결정 구조적 특성을 관찰하였다. Figure 2는 형성된 백막에 대한 표면 이미지와 두께를 SEM을 이용하여 나타내고 있다. 백막의 표면은 수세미나 스편지와 유사한 형상을 나타내고 있으며, 형성된 백막은 공기분위기 하에서 500℃, 1 h 동안 소결을 실시하여 표면을 관찰하였다. Figure 2(a)에서 소결 전후의 백막 표면의 변화를 나타내고 있다. 소결 후 백막 표면은 기공의 크기가 더 커지고 전명하게 나타나는 것을 관찰 할 수 있었다. 백막의 두께는...
Figure 2(b)에 나타나는 것과 같이 180 nm를 나타내었으며, 이 두꺼이는 QCM에서 나타내고 있는 최종 박막의 두께와 일치하는 것을 확인 할 수 있었다.

Figure 3은 형성된 박막과 박막 형성 과정에서 생성되는 입자에 대한 X-ray diffraction (XRD) 분석을 나타내고 있다.

Figure 2. Scanning electron microscopy (SEM) images of the nickel oxide thin film deposited on a glass substrate in a solution consisted of 30 ml of 40 ml of 1 M nickel sulfate, 0.25 M potassium persulfate, 10 ml aqueous ammonia (28-30% NH₃), and 20 ml of distilled water at room temperature for 40 min (a) Top-view image; (b) Cross-sectional image.

Figure 3a 그림에서 나타내어지는 것과 같이 박막의 crystallinity가 상당히 약하게 나타나는 것을 확인 할 수 있었다. 하지만 공기분위기 하에서 500℃, 1 h 동안 소성은 한 것은 특성화한 peaks가 나타났으며 이것은 JCPDS-ICDD card No. 78-0643의 nickel oxide와 일치함을 알 수 있었다. Figure 3b는 박막이 형성되는 과정에서 생성되는 입자를 채취하여 소성 전후를 비교해 보았다. 소성 전 입자는 \(\alpha \)-Ni(OH)₂와 일치하며 소성 후는 박막과 같은 nickel oxide peaks를 나타내었다. 이것을 통하여 형성된 박막은 소성을 통하여 \(\alpha \)-Ni(OH)₂에서 NiO로 상전이가 일어남을 확인 할 수 있었다. Figure 3c는 반응에 사용된 수용액에서 potassium persulfate의 역할을 알아보기 위하여 potassium persulfate를 제외한 반응액에서 생성된 입자들 나타낸 것이다. Persulfate는 강한 산화제로서 PbO₂, MnO₂. 그리고 \(\text{TiO}_2 \)와 같은 산화물을 증착하기 위하여 많이 사용되어 왔다. Figure 3b와 3c에 나타난 것과 같이 potassium persulfate는 반응과정에서 산화제로 사용되어 생성되는 입자의 crystallinity를 향상 시키는 역할을 하였다.

Figure 3. X-ray diffraction (XRD) patterns of (a) the thin film deposited on a glass substrates, (b) filtered precipitate, (c) (without potassium persulfate) in a
solution of 40 ml of 1 M nickel sulfate, 30 ml of 0.25 M potassium persulfate, 10 ml aqueous ammonia (28-30% NH₃), and 20 ml of distilled water at room temperature, and (r) nickel oxide reference, JCPDS-ICDD card No. 78-0643 • annealed 500℃, 1 h.

TGA, XPS 분석을 통하여 α-Ni(OH)₂ 구조의 기 형성된 박막이 소성 후 NiO로 상전이가 일어남을 확인하였다.

4. 결 론
NiO 박막은 화학적 용액 성장법에 의해서 상온에서 이루어졌으며 사용되어진 두 가지 기판, glass slide 와 실리콘 웨이퍼에 균일하고 uniform하게 증착되었다. SEM 부직을 통하여 박막의 표면은 스크램지와 유사한 구조를 나타냈으며, 180 nm 두께의 박막이 형성되었음을 확인하였다.
α-Ni(OH)₂ 구조를 가지는 기 형성된 박막은 500℃, 1 h 소성 과정을 통하여 NiO로 상전이가 일어남을 XRD, TGA, 그리고 XPS 분석을 이용하여 관찰하였으며, 박막 성장은 혼합 조건에 따라 민감하게 작용을 하며, 입자 형성의 homogeneous 반응에 의해 이루어진다. NiO 박막 형성 과정에서 persulfate가 없을 경우 박막이 형성되지 않았으며, persulfate는 강한 산화제로서 반응에 사용되었다. 화학적 용액 성장법에 의한 NiO 박막의 성장 메카니즘은 hydroxide 나노 입자의 sticking과 분자 수준의 heterogeneous 성장이 함께 일어난다. 이렇게 형성된 스크램지 구조의 NiO 박막은 gas sensor 또는 비교판적 많이 요구되는 분야에 적용할 수 있을 것이다. 화학적 용액 성장법에 의해 제조된 NiO 박막에 대한 전기적 특성에 대한 연구가 더 이루어질 수 있는 연구가 필요하다.

감사의 글
이 연구는 한국과학재단에서 지원한 해외공동연구과제 수행결과이며, US NSF (CTS0-0348723)의 지원에 의해서 이루어졌습니다.

참 고 문 헌