Cinnamoyl chloride and PEI 수지를 이용한 감광성 고분자 합성 연구

김영택, 오성상, 류해운**, 윤세훈, 이의수*

(eslee@dgu.edu)
동그대학교 생명화학공학과, **동양제철화학

A Study on the Synthesis of Photopolymer using Cinnamoyl chloride and PEI Resin

Young Taek Kim, Sung-Sang Oh, "Hae Youn Rhyou, Sei-Hun Yun, Euy Soo Lee*

Dept. of Biochem. & Chem. Eng., Dongguk University (eslee@dgu.edu)

"DC Chem. Co., Ltd., R&D Center

Abstract

Derivative of CC(cinnamoyl chloride) and PEI(polyethyleneimine) were selected to make photochemicals for patterning(lithography) of a flexible substrate. Crosslinking are formed by photoaddition between an excited cinnamoyl group of one PEI cinnamate chain with that of a ground state cinnamoyl group belong to another. At UV 254nm (max UV280nm) absorbance PEI cinnamate was crosslinked, as a result of that, a phenomenon of the solubility decrease was appeared.

1. 서론

신나릭산(cinnamic group)은 UV 280nm에서 최대 파장 흡수 영역을 가지고 있으며 일정한 UV 조사에 의하여 광이량화(photodimerization)가 발생하여 Fig. 1과 같이 truxillic acid와 truxinic acid를 형성한다. 결합 체인 중에 카보닐기(carbonyl function, >C=O)에 근접한 이중 결합(unsaturated ethylenic linkages)에서 광반응에 의한 사이클로 부탄(cyclobutane) 형태의 가교결합(crosslinking)이 발생한다. Truxillic acid와 truxinic acid는 신나릭산보다 상대적으로 용해도가 감소하는 특성을 가지고 있는데, 신나릭산과 폴리머와의 반응으로 형성된 신나믹 화합물(cinnamate) 역시 광조사에 의한 가교결합의 형성으로 용해에 대한 용해도(solubility)가 현격히 감소하는 특성을 나타낸다.

Figure 1. Solid state photodimerization of cinnamic acid

522
폴리비닐 신나미트의 경우 다른 두 체인에 연결되어 있는 신나미트는 광이량화에 의한 가교 결합을 형성하며 불용성 고분자(insoluble photopolymer)화를 이룬다. 폴리비닐 신나미트의 감광성 고분자로서의 특징은 빛이 차단된 반응하에 코팅처리된 필름을 장시간 보관할 수 있고 우수한 감광속도(photographic speed)를 유지하며, 또한 에칭(etching)이 간결하고 탁월한 용해도 감소 특성을 가진다.

폴리비닐 신나미트의 개발 모형과 유사한 방법으로 다양한 신나미트 화합물을 검토할 수 있는데, 본 연구에서는 폴리비닐 알콜 대신 유사한 다른 성격을 가지는 폴리머(PEI)를 대체하는 경우 폴리머의 물성과 신나미트의 물성을 이어받는 포토폴리머의 합성방법에 대하여 검토하였다. 즉, Fig. 2의 반응식으로 설명되는 폴리비닐 신나미트와 유사하면서도 포토폴리머의 성격이 구별되는 감광성 고분자의 합성을 시도하였는데, 신나미트 및 PEI의 반응을 이용한 본 연구의 반응식을 Fig. 3에 나타내었다.

![Figure 2. Synthetic polyvinyl cinnamate](image)

![Figure 3. PEI cinnamate reaction](image)

2. 실험

감광성 고분자로 사용한 PEI(polyehthylenimine)로 평균분자량 800의 시료(water free branched polymer PEI)와 평균분자량 25,000의 시료(water free branched polymer PEI)를 사용하였다. 일반적인 감광제의 지지체(matrix)로 사용하는 고분자의 평균분자량이 대략 10,000 - 20000의 범주에서 적용되며, 본 연구에서는 분자량 차이에 따른 네거티브용 감광성 고분자(negative type photopolymer)의 합성 가능성이 특성을 추정하기 위해 평균분자량 차이가 현격한 두 개의 PEI 시료를 사용하여 감광성 고분자를 합성하였다. 본 연구의 저자 감광성
고분자 합성 공정도를 Fig. 4에 나타내었다.

Dissolution
PEI(800 또는 25000) 1.29g을 용해 MC 50ml에 용해
↓
Base Treating
TEA 3g(base solute) 혼합
↓
Inert Atmosphere & Low Temperature Control
N2 가스 투입 및 약 5℃ 유지(부반응 억제)
↓
Dropping
CC 5g를 dropwise로 혼합
↓
Reflux Reaction
Dropwise 이후 40℃ 이하 온도로 약간 상승시켜 2~3시간 reflux 반응
↓
Washing
4 wt% Na2CO3 수용액으로 수확 세척
↓
Phase Separation
하층의 노란색 용액 분리
↓
Evaporation
MC 제거 및 수율 계산

Figure 4. Reaction Procedure

3. 결과 및 고찰
PEI cinnamate 합성물의 NMR, IR 분석
PEI cinnamate 합성물의 NMR 스펙트럼은 Fig.5과 같이 H-method에서 확인할 수 있었으며, IR 스펙트럼은 Fig. 6에 나타내었다. 3272 cm⁻¹에서 N-H peak, 3027 cm⁻¹에서 benzen ring peak, 2983 cm⁻¹에서 -CH-CH- peak, 1770 cm⁻¹에서 C=O peak, 1633 cm⁻¹에서 C=C peak를 확인하였다.

PEI cinnamate 합성물의 UV 분석
PEI(Low, High)cinnamate 합성물의 UV 254nm에 대한 총조사에 대한 흡광도 변화를 확인할 수 있었으며 총조사 시간변화에 따른 흡광도 변화가 발생함을 확인하였다.(Fig. 7) 상대적으로 UV 365nm에서는 합성된 신나미아이(cinnamate) 화합물의 광반응성이 없는 것을 볼 수 있고(Fig. 8) 이는 신나미산의 광반응성(Fig. 1)과 유사한 UV 영역에서 PEI cinnamate의 광반응성이 발생하는 것으로 미루어 PEI 고분자가 지지체로서의 역할(matrix)만을 하는 것이며 이로 인한 PEI cinnamate의 광증합도에 따른 용해도 변화를 측정할 수 있었다.

4. 결론
Polyethyleneimine(PEI)과 cinnamoyl chloride의 자연 합성으로 PEI cinnamate를 합성하였으며, PEI cinnamate는 UV 254nm에서 가교결합을 일으키고 이로 인해 UV 조사량이 증가할 수록 UV 흡광량의 감소를 나타내는 현명적인 네가트리병 환경용 구분자를 합성하였다. 이 PEI cinnamate 화합물은 UV에 의한 광중합량에 따라 용매에 대한 용해도에 영향을 미치고 있음을 확인하였다.
인할 수 있었다.

5. 참고자료
2. 永松元太, 乾 英夫 著. 感光性高分子 (1977)
3. Hyun min kim, Sung Ro Choi, Su Min Lee, Synthesis and Properties of Linear and Crosslinkable Polyurethane Elastomers Department of Chemistry, Hannam University
4. Imane Assaid, Dominique bosc and Isabelle Hardy. Improvements of the Polyvinyl cinnamate Photoresponse in Order to Induce High Refractive Index Variations (2003)
5. 박이순, 한윤수, 폴리비닐알코올에 감광성기를 도입한 수용성 감광성 고분자의 합성 및 감광특성. 경북대학교 고분자 공학과(1995)

Figure 5. NMR data of PEI-cinnamate

Figure 6. IR data of PEI-cinnamate

Figure 7. UV absorption curve after irradiation at UV 254 nm

Figure 8. UV absorption curve after irradiation at UV 365 nm

Applied Chemistry, Vol. 8, No. 2, 2004