Preparation of Photocatalytic Thin Film by Low Temperature Plasma Process

Ho Min, Byung Hoon Kim,* Jong Ho Kim and Dong Lyun Cho
Faculty of Applied Chemical Engineering, Research Center for Photonic Materials and Devices, Engineering Research Institute,* Chonnam National University, 500-757 Gwangju, Korea

ABSTRACT

TiO₂ thin films were deposited onto glass plates by PECVD for the preparation of photocatalytic thin film. TTIP was used as a precursor and mixed with oxygen and argon. Effects of deposition temperature, discharge power, deposition pressure and O₂/Ar gas flow ratio on the structure of the film and the photocatalytic performance were investigated. The TiO₂ films showed the structural change from amorphous state to anatase crystalline state at 400°C. A film prepared at 400°C, 10W, gas flow ratio of 20sccm/100sccm, and 2.1×10⁻¹torr showed the best photocatalytic performance, which was evaluated based on the degradation efficiency of methylene blue under UV-A light. The photocatalytic performance depended more on the deposition temperature than the discharge power.

1. 서론

최근 빛에너지의 사용이 강화되면서, 환경에 폐기물이 포함되어 있는 업무실, 특히, TiO₂는 우수한 광촉매 성질이 있어, 환경의 안전성, 효과적인 전화물리, 높은 환경 및 사업적 적응성을 갖기 때문에 가장 유망한 광촉매 소재로 알려지고 있다. 기존의 TiO₂ 광촉매는 powder 형태로 제조 하였으나, powder는 광촉매 사용 후 외부의 압력에 이러한 결정을 보완하기 위하여 TiO₂ 박막형태로 지지체에 고정하는 방법이 연구자들의 관심이 집중되고 있다. TiO₂ 를 고정시키는 방법중에는 분말혼합법과 금속산화법, spin coating, spray pyrolysis, sol-gel법 그리고 CVD법이 있으며, 최근 불순물이 없는 양질의 박막을 농축적으로 균일하게 증착 시킬수 있고, 결정에 결정만 작 있으며 효과적으로 조성을 조절할 수 있다는 장점 때문에 CVD법이 관심을 모으고 있다. 본 연구에서는 PECVD(plasma enhanced chemical vapor deposition)법을 사용하여 TiO₂ 박막을 제조하고 제조된 박막의 광촉매 특성을 살펴보았다.
2. 이론
현재 개발되어 있거나 실제 응용 및 상업화에 이용되고 있는 대부분의 광촉매는 금속화학물계들로 TiO$_2$, WO$_3$, SrTiO$_3$, SnO$_2$, ZnO, ZrO$_2$, V$_2$O$_3$ 등을 있다. 이 중 TiO$_2$는 다른 광촉매들과 비교하여 광부식이나 화학적 부식에 대하여 안전하며, 인체에 무해하고, 가격이 저렴하다는 경제적인 장점을 가지고 있다. 또한, 다른 금속화학물계의 활성도에 있어서도 TiO$_2$ (anatase) > TiO$_2$ (rutile) > ZnO > ZrO$_2$ > SnO$_2$ > V$_2$O$_3$의 순으로 TiO$_2$가 가장 큰 활성도를 보이고 있다. TiO$_2$는 anatase와 rutile의 두 가지 결정구조를 가질 수 있는데, anatase 구조가 rutile 구조보다 광촉매적 특성이 우수한 것으로 알려져 있어 일반적으로 anatase 구조를 선호하고 있다.

3. 실험
3.1 TiO$_2$ 광촉매 박막 코팅
전구체인 TTIP을 bubbler (50℃)를 사용하여 Ar (carrier gas) 및 산소와 함께 반응기안으로 유입시키면서 적온 플라스마 상태에서 박막이 유리 기판에 적층되도록 하였다. Substrate의 온도는 실온에서부터 400℃까지 조절하였으며, discharge power는 10W부터 300W까지 변화시켜 가면서 코팅하였다. 실온에서는 Ar과 O$_2$의 유량비를 변화시켜가면서 실험하였으나, 그 이상의 온도에서는 두 가지의 유량비 (20sccm/20sccm과 100sccm/20sccm)만을 사용하였다. Deposition time은 2시간에서 8시간까지 2시간 간격으로 변화시켰다. 적층속도 측정 및 표면분석에는 thickness monitor, SEM, XRD, XPS, EDX 등을 사용하였다.

3.2 박막의 광촉매 특성 평가
유리 기판 위에 코팅 된 박막의 광촉매 특성은 methylene blue의 분해실험을 통하여 평가하였다. 5ppm의 methylene blue 용액을 페트리디지에 50ml를 담아서 그 안에 코팅 된 유리판을 넣은 후 UV-A light를 3시간 동안 비춰 주면서 1시간 간격으로 methylene blue의 농도변화를 UV spectrometer을 사용하여 관찰하였다.

3.3 코팅된 박막의 접착력 평가
접착력의 향상을 위해 유리판에 TiO$_2$ 코팅 시키기 전에 HMDSO를 전구체로 하여 Si를 증착 시켰다. 그런 다음 TiO$_2$ 박막을 코팅시켜서 접착력을 평가하였다. 접착력 평가방법으로는 tape test (ANSI/ASTMD 3354-76)법을 이용하였다.

4. 결과 및 토론
4.1 TiO$_2$ 광촉매 박막의 코팅
실온에서 제조된 TiO$_2$ 박막은 대체로 시간에 따라서 박막의 두께가 증가하는 하지만 그 두께가 100A이하로서 박막상장이 거의 미비하였다. Deposition temperature가 200℃ 이상이 되면 서부터 박막이 결정으로 성장하는 것이 관찰되었다 (그림 1, 그림 2). 결정은 polycrystalline 구조를 보이며서 deposition temperature가 증가함에 따라 크기가 증가하였다. 박막의 두께는 deposition time이 증가함에 따라 비례적으로 증가하였으나, discharge power가 40W이상인 경우에는 가장 반응으로 인하여 powder가 생성되어 박막 성장이 저해되었다. 이로써, TiO$_2$ 광촉매 박막의 성장에는 discharge power보다는 deposition temperature가 더 큰 영향을 준다는 것을 알 수 있었다.
그림 1. SEM pictures of TiO₂ film surface (deposition temperature 200℃. Deposition time 4hr. Discharge power 10W. 유입가스 유량 Ar/O₂ = 100sccm/20sccm)

그림 2. SEM pictures of TiO₂ film surface (deposition temperature 400℃. Deposition time 6hr. Discharge power 10W. 유입가스 유량 Ar/O₂ = 100sccm/20sccm)

4.2 박막의 광촉매적 특성 평가

![Graphs with data points and lines showing the effect of deposition time and temperature on the performance of the film.](image-url)

그림 3. Methylene blue 분해 실험을 통한 박막의 광촉매적 특성평가 (a) Deposition time에 따른 광촉매적 특성평가 (b) Deposition temperature에 따른 박막의 광촉매적 특성평가
박막의 광촉매 특성은 그림 3. (a)에서 보는 것처럼 deposition time이 증가하여 박막의 두께가 두꺼워짐에 따라 그 특성이 우수해짐을 알 수 있었고, 그림 3. (b)에서 보는 것처럼 deposition temperature가 증가함에 따라 박막의 광촉매적 특성이 역시 우수해짐을 알 수 있었다. 하지만 discharge power가 40W 이상이거나 deposition temperature가 200℃이하인 경우에는 박막의 균일한 성장과 결정 생성이 잘 이뤄지지 않아 광촉매 특성이 deposition temperature에 비례하여 증가하지 않았다.

4.3 코팅된 박막의 접착력 평가
평가 방법은 tape test(ANSI/ASTMD 3354-76)를 이용하였으며, 이 방법에 의한 접착력 평가 기준은 표 1에 나타나 있다.

<table>
<thead>
<tr>
<th>접착성</th>
<th>등급</th>
</tr>
</thead>
<tbody>
<tr>
<td>No peeling</td>
<td>5A</td>
</tr>
<tr>
<td>Trace peeling or removal along incisions</td>
<td>4A</td>
</tr>
<tr>
<td>Jagged removal along incisions</td>
<td>3A</td>
</tr>
<tr>
<td>Jagged removal along most incisions</td>
<td>2A</td>
</tr>
<tr>
<td>Removal from most of area of the x-cut</td>
<td>1A</td>
</tr>
<tr>
<td>Removal beyond the area of x-cut</td>
<td>0A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>접착성</th>
<th>등급</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMDSO만 코팅</td>
<td>5A</td>
</tr>
<tr>
<td>실온에서 TiO₂만 코팅</td>
<td>1A</td>
</tr>
<tr>
<td>실온에서 HMDSO위에 TiO₂를 코팅</td>
<td>2A</td>
</tr>
<tr>
<td>400℃에서 TiO₂만 코팅</td>
<td>4A</td>
</tr>
<tr>
<td>400℃에서 HMDSO위에 TiO₂를 코팅</td>
<td>5A</td>
</tr>
</tbody>
</table>

표2. Scotch tape pull test에 의거한 박막들의 접착력.

표 2에서 보는 바와 같이, 박막의 접착력은 deposition temperature에 크게 좌우되어 실온에서 적층한 경우 쉽게 벗겨졌으나 온도가 증가함에 따라 크게 향상되었다. 또한, TiO₂ 박막을 적층하기 전에 HMDSO 플라스마를 이용하여 유효 기판과 화학적 구조가 유사한 박막 (SiO2-like film)을 적층할 경우 접착력이 더욱 향상되는 것을 알 수 있었다.

감사의 글 : 본 연구는 한국과학재단 지역대학우수과학자육성지원연구사업(KOSEF R05-2002-00000716-02002)의 지원으로 수행되었음.

5. 참고 문헌
(1) 다케우체 고우지, 무라와 사다오, 이부스키 다가시, 광촉매의 세계
(2) 권영국, 플라즈마 화학증착법으로 TTIP를 이용한 TiO₂박막의 제조 및 특성, 경북대학교 화학과 대학원
(3) Cho, Jeong-Ho. Effects of gas phase reaction on deposition characteristics during TiO2 Thin film preparation by CVD., 학위논문 (석사) - 한국과학기술원, 무기재료공학과, 1992