PFA / Silica 유-무기 복합체의 제조 및 표면특성

Jeong-Cheol Beom · Jong-Wook Ha · In Jun Park · Soo-Bok Lee
Interface Materials and Process Lab. Korea Research Institute of Chemical Technology,
Taejon 305-600, Korea

ABSTRACT
Poly(perfluoroalkyl acrylate)(PFA) / silica composites having different silica size were prepared by surface polymerization. In this study, surface characterizations of PFA/silica composites were done by HR-TEM(High Resolution Transmission Microscopy), contact angle measurement, sliding angle measurement, surface roughness measurement, and the relationships between the sliding angle and the contact angle were investigated. In the highly hydrophobic region, the sliding angles of water droplets decreased with increasing contact angle. Their surface free energies were calculated with contact angle data by geometric mean approximation. The composites with super water repellent and sliding could be obtained with contact angle of above 150° and sliding angle of below 10° to water droplets. The ultimate value of surface free energies of the composites reached below ca. 1dyn/cm.

1. 서론
액체 특허 물에 대한 고체 표면의 젖음도(wettability)는 일상생활에서뿐만 아니라 산업의 다양 한 공정에서도 매우 중요한 현상을 중의 하나이다. 초발수성(超撥水性), 초발유성(超撥油性) 및 초월수성(超滑水性)을 가진 고체 표면은 산업의 다양한 공정에서뿐만 아니라 일상생활에서도 다양하게 응용할 수 있는 매우 흥미로운 특성을들 보여준다. 지금까지 물에 대한 반발력을 받더라도 높은 접촉각(contact angle)을 가진 재료표면일수록 물을 배제한다는 개념이 일반적이었다. 그러나 많은 많은 연구자들에 의해 반발수에 대한 개념이 접촉각뿐만 아니라, 구름각(sliding angle)의 중요성이 많이 제안되고 있다. 구름각이란 물방울이 붙어있는 재료 면에서 매끄럽게 떨어지는 임계각도이다. 본 연구에서는 PFA/실리카 복합체를 표면증합법으로 제조하고[1-2], 제조된 유-무기 복합체의 표면특성을 HR-TEM, 접촉각 측정, 구름각 측정, 접촉각 결과로 계산된 접보기 표면자유에너지, 표면 거칠기(surface roughness) 측정들을 이용하여 밝혔다.

2. 실험
초발수성 PFA/실리카 유-무기 복합체의 제조는 Fig 1에 묘사된 것처럼 자기조립형 아조계 개시체 ADS(4,4'-azobis-(4-cyanopentanoic acid- (3'-chlorodimethylsilyl)propylester)를 다양한
크기의 실리카 표면우에 화학적으로 반응시켜 고정시킨 후 불소계 단량체 FA [CF₃(CF₂)₇CH₂CH₂COOH=CH₂]를 라더칼 증합하였다[1-4].

Morphology를 관찰하기 위해서 복합체를 HR-TEM(Philips, F20) 200kV로 측정한 결과 증합후의 입자 크기가 증합전보다 나노미터 크기로 증가한 것을 알 수 있었다. 발수성을 보기 위해 접촉 각은 20±1℃에서 15μt의 물 및 methylene iodide(ΜI) 두 종류의 접촉액을 사용하여 광조사기(illuminator)가 부착된 Goniometer (Rame-Hart 100-series)로 각 샘플마다 서로 다른 곳을 다섯 번 측정하여 평균값을 취하였다[5]. 구름각은 실험실에서 자체 제작한 장치를 이용하여 20±1℃ 에서 15μt의 물로 다섯 번 측정하여 평균 값을 취했다[6]. 표면장력이 72.8dyn/cm인 물과 표면장력이 50.8dyn/cm인 MI(Aldrich로부터 얻은 접촉각 측정결과를 식(1) 식(2)의 기하 평균식 (geometric mean approximation)을 이용해서 유-무기 복합체의 접보기 표면자유에너지를 구했다.

\[\gamma_{SL} \left(1 + \cos \theta \right) = 2\left(\gamma_{SV}^d \gamma_{LV}^d \right)^{\frac{1}{2}} + 2\left(\gamma_{SV}^p \gamma_{LV}^p \right)^{\frac{1}{2}} \]

\[\gamma_{SV} = \gamma_{SV}^d + \gamma_{LV}^d \]

여기서 SL은 고-액체계면, SV는 고-기체계면, LV는 액-기체계면을 나타내고, d는 분산상 p는 극성상을 나타낸다.

표면 거칠기는 Mitutoyou SURFTEST SV-400을 이용하여 측정하였다. 여러 거칠기 인자들 중 중심선산술평균편차(Ra, arithmetic mean deviation from mean line) 거칠기, 중심선근평균제곱편차(Rq, root-mean-square deviation from mean line) 거칠기, 최대높이(Ry or Rmax, maximum height)거칠기 값들을 구하였다.

3. 결과 및 논론

Fig 2는 표면 증합과정 후의 High resolution TEM 이미지를 보여준다. (a)는 순수 실리카, (b)는 복합재료를 나타낸 것으로 순수 실리카의 평균 입자 크기가 약 12nm이고, 증합후의 평균 입자 크기는 약 30nm로 증가함을 알 수 있다. 복합체에서 PFA는 증합시간, 개시제 양도 증합조건에 따라 조절될 수 있다. 키탄도의 두 가지 요인 중 기하학적인 요인을 알아보기 위해서 표면거칠기를 측정하였고, 이를 Table 1에 나타냈다. 실리카 크기가 별수록 거칠기 파라미터가 큰 값을 갖는다. 실리카 크기가 12nm와 100μm의 경우 약 8400배, 1μm와 100μm의 경우 100배이지만 표면거칠기 파라미터 값의 차이는 약 3배 정도 되는 것은 크기가 작은 것들이 서로 aggregation 되었기 때문으로 보인다. 제조된 유-무기 복합체의 표면특성을 알기위해 접촉각측정과 결보기 표면 자유에너지 검정하여, Fig 3에 도시하였다. 그 결과 PFA/실리카 복합체가 물에 대한 접촉각은 모두 150°이상이었고, MI와 이루는 접촉각은 135°이상이었으며, 실리카 크기가 커질수록 접촉각이 증가하는 경향을 보였다. 또한 접촉각 측정결과를 이용하여 계산한 결과 결보기 표면자유에너지 네지는 약 1.0 dyn/cm 이하로 매우 낮은 표면자유에너지를 가진다는 것을 확인하였다. 접촉각의 예 초소수성 표면의 중요하게 인식되어 많은 연구가 진행되고 있는 구름각의 결과를 Fig 4에 도시하였다. 그림은 1μt의 물에 대해 측정한 복합체의 구름각을 보여주는 데 구름각이 거의 10° 이하로 매우 미끄러지기 쉽다는 것을 확인하였다. 홍미롭게도 구름각의 결과는 실리카 크기가 커질수록 구름각이 증가하는 경향을 보여는데, 이는 접촉각 결과와는 반대해향을 보여준다. 이와 같이 접촉각, 구름각 및 결보기 표면자유에너지를 등의 표면특성을 살펴본 결과 제조된 PFA/실리카 복합체가 초발수성, 초발유성 및 초활수성[7]을 동시에 갖는 것을 알 수 있었다.
4. 결론
본 연구에서 FA와 실리카를 표면증합법을 이용하여 유-무기 복합체를 제조하고 그 표면특성을 살펴보았다. 접촉각 측정의 결과로 제조된 복합체가 매우 낮은 표면에너지를 갖고 초방수성과 초방유성을 갖는다는 것을 알 수 있었다. 또한 구름각 측정의 결과로 복합체가 초활수성을 갖고, 접촉각이 증가함수록 구름각은 감소한다는 사실을 알 수 있었다. 이러한 초방수성, 초방유 및 초활수성을 갖는 재료는 차량용 front glass나 표면 도장 및 섬유의 표면처리 등에 광범위하게 이용될 것이다.

참고문헌

Figure 1. Schematic diagram of the generation of fluorinated surface-attached polymer shell on silica surfaces.
Figure 2. High Resolution TEM image of silica (a) an unmodified silica and (b) modified silica (operated at 200kV).

Table 1. Comparison of roughness parameter of PFA/silica composites.

<table>
<thead>
<tr>
<th>Roughness parameter</th>
<th>12nm</th>
<th>1μm</th>
<th>25μm</th>
<th>75μm</th>
<th>100μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra</td>
<td>6.79</td>
<td>7.74</td>
<td>1019</td>
<td>17.18</td>
<td>21.84</td>
</tr>
<tr>
<td>Rq</td>
<td>10.22</td>
<td>10.90</td>
<td>12.89</td>
<td>21.38</td>
<td>27.15</td>
</tr>
<tr>
<td>Ry</td>
<td>54.58</td>
<td>54.70</td>
<td>60.96</td>
<td>112.81</td>
<td>142.99</td>
</tr>
</tbody>
</table>

Figure 3. The contact angle data and surface tension of PFA/Silica composites.

Figure 4. Comparison of the Sliding angle data and contact angle data of PFA/Silica composites.