The Development of SiC Supported Iron Oxide Sorbent for H₂S Removal

Ju Hyuk Kim · Hee Taik Kim
Department of Chemical Engineering, Hanyang University

Abstract

Iron oxide sorbent supported on SiC which was sintered for porous structure have been prepared and characterized by SEM and XRD. Antimony trioxide was added as additive for direct sulfur recovery. This sorbent showed good performance for H₂S removal and also exhibited high stability in the sulfidation and regeneration cycle. The characteristics of sorbent reactivity were investigated using TGA and reaction temperature changed from 450 to 650℃. The optimum value of reaction temperature was 600℃ and the result of sulfur loading was 18 wt%.

1. 서론

석탄가스화 복합발전시스템(IGCC : Integrated Gasification Combined Cycle)은 현재 비 분산 연소에 의한 화력발전에 비해 높은 연료효율, 경제성으로 여러방면에 장점을 가진 발전방식이다. 이 공정은 크게 석탄가스화, 가스정제, 발전부문으로 구성되어 있으며 가스 정제부문은 dust 제거와 COS 및 H₂S 제거로 나눌 수 있다. 탈황공정은 가스화로에서 나오는 석탄가스 중의 COS 및 H₂S를 제거하는 중요한 단위공정의 하나이다. 탄화물 계발에서 고려할 주요 특성은 화합물생산용의 반복과정에서 수반되는 화학적 변환에 따른 탄화물 결정의 물리적 형상(physical integrity)을 유지하는 것이다. 따라서 대상 탄화물의 반복적 사용에 따른 기계적 강도와 효율적인 화합물성장이 중요하다. 이에따라의 고온건식 탄화물 연구 및 개발은 이연계에 집중되어있다. 하지만 이연계 탄화물들은 환산염 형성과 하연의 회복 등으로 인해 여러 cycle 사용 중에 탄화물이 노화되는등 문제를 가지고 있으므로 비아연계 탄화물에 대한 연구개발이 필요하다. 가스화 시스템의 전체효율을 증가시키며 최적공정조건인 중온영역(450~600℃)에 적합하고 화합물용 100ppm이 하지 제거가능한 탄화물로서 천연 원광석게 흡착제가 연구되었으나 화합물생산용의 반복과정에서 내마모성의 약화가 문제점으로 지정되었다. 본 연구에서는 내마모성을 증가시키기 위해 지지체로 SiC(Silicon Carbide)를 선정하고 흡착제에 적합하도록 비표면적을 증가시키기 위해 소결과정을 통해 다공성 SiC로 조립화하여 활성성분인 탄화물 (Fe₂O₃)과 직접 화합수가 가능한 침가체인 안티몬(Sb₂O₃)으로 탄화물제 제조하였다. 탄화물의 분쟁을 알아보기 위해 XRD와 SEM분석을 수행하였으며 반응특성을 알아보기 위해 TGA에서 탄화물 재생실험을 수행하였다.

2. 이론

철과 황의 화합물은 다양하게 존재한다고 알려져 있고 FeS₂, FeS가 많이 생성된다. 재생반응의 경우 온도에 따라 다른 화합물이 생성되는데 250℃이상에서는 ferrous sulfate(FeSO₄·7H₂O)가 생성되며, 350~450℃에서는 ferrous sulfate와 iron oxide의 혼합물이 생성된다. 그리고 500℃이상에서는 ferric oxide(Fe₂O₃)가 생성된다. 반응의 전제
반응식을 살펴보면 다음과 같다.[1]
(1) 환원반응
3Fe_2O_3(s) + H_2(g) or CO(g) → 2Fe_3O_4(s) + H_2O(g) or CO_2(g)
(2) 황화반응
Fe_2O_3(s) + 3H_2S(g) + H_2(g) → 3FeS(s) + 4H_2O(g) : 고온
H_2S(g) + CO(g) → COS(g) + H_2(g)
H_2S(g) + CO_2(g) → COS(g) + H_2O(g)
2CO(g) → C(s) + CO_2(g)
CO(g) + H_2(g) → C(s) + H_2O(g)
Fe_3O_4(s) + 3H_2S(g) + 8H_2O(g) → 3FeSO_4(s) + 11H_2(g) : 저온
(3) 재생반응
4FeS(s) + 7O_2(g) → 2Fe_2O_3(s) + 4SO_2(g)
6FeS(s) + 4SO_2(g) → 2Fe_3O_4(s) + 5S_2(g)
4Fe_2O_3(s) + O_2(g) → 6FeO_3(s)
3FeS(s) + 4H_2O(g) → Fe_3O_4(s) + 3H_2S(g) + H_2(g)
4H_2S(g) + 2SO_2(g) → 3S_2(g) + 4H_2O(g)

3. 실험
- 지지체제조
입도 분포가 2 ～ 3 μm 인 SiC(고순도화학연구소, 일본)을 첨가시키고 3%PVA를 첨가하여 교반한 후 분리진조리를 사용하여 입도가 균일한(10 ～ 15 μm) 구형의 입자를 얻었다. Si와 활성탄을 소결제로 3 wt%, bentonite를 무기결합제로 5wt% 첨가하고 액상과라핀과 나프탈렌을 기공형성제로, 3% PVA를 성형조제로 첨가하여 pellet 성형(100 kg/cm^2)을 하였다. graphite furnace를 이용하여 10^6 C/min의 속도, 3 l/min의 Ar gas 분위기로 2000 °C 1시간 소결하였다.[2]
- 탈황제 제조
탈황제로서 지지체와 활성성분, 그리고 첨가제를 명상대로 만든 다음 소성을 통해 composite 형태의 홀작제를 제조하고자 하기 위하여 소결한 SiC를 산화철(Fe_2O_3) 대비 20 wt%로 참가하고 첨가제인 안티온(Sb_2O_3)의 함량을 산화철 대비 3 wt%로 참가하여 pH 2.5로 적정한 0.3N 육수산(oxalic acid) 용액에서 5시간 교반한 후 건조하여 파쇄하였다. 과거의 연구에서 얻은 최저의 온도인 800℃로, 12차 소성하여 탈황제를 제조하였다.(NFSF3)[3,4]
- 실험방법
TGA를 통해 탈황제에 대한 탈황 및 재생반응특성을 조사하기 위해 Model TG-2101C(Cahn Instruments, Inc.)를 사용하였다. 탈황/재생반응은 450 ～ 600°C의 온도범위에서 3cycle ～ 황화/재생을 1Cycle로 한다 ú용수성원이다. 반응기는 100ml/min의 혼합가스를 사용하였으며 그 조건은 다음과 같다:1% H_2S, 13.5% CO, 11.6% O_2, 12.5% Hz, 10% H_2O, 51.5vol% N_2, H_2O를 소량으로 주입하기 위해 syringe pump을 사용하였고, 반응기로는 heating band로 가열된 관을 통해 스팀상태로 주입하였다. 반응관과 후의 홀작제의 상태와 생성물을 확인하기 위하여 X선 회절기(X-ray diffractometer, XRD: Rigaku RADC), Scanning Electron Micrography(SEM; Jeol-JSM-3 SCF) 장치를 사용하였다.

4. 결과 및 토론
분리진조지를 통해 육수성이 좋고 입도가 균일한 입자로 조립화한 SiC 형태의 Figure에 나타내었다. C. Pham-Hu등은 지지체로서 SiC는 효과적인 열전도체로 높은 열저항 성과 기계적 강도를 가지고 있고 열전도체이기에 산화분위기 재생시 과열(hot spot)이 일어나지 않고, 화학적으로는 비활성(inert)이나, 산화에 의해 silicon oxycarbide layer가 표면에 존재하기 때문에 금속(metal) 또는 산화상태(oxidic phases)에 상대적으로 좋은 분
화학수소 제거를 위한 SiC 지지제의 산화혈 홀화체 개발

산력을 가지고 있다고 보고하였다. [5,6] 참고문헌과 실험을 통해 찾아낸 소결온도 2000℃로 graphite furnace에서 SiC를 소결한 결과를 Figure 2에 나타내었다. [7]

소결을 통하여 조립된 다공성 지지제를 가지고 탈황제를 제조하여 그 형태를 Figure 3에 나타내었고 XRD로 분석한 결과를 Figure 4에 나타내었다. 탈황제는 직접 황화수

가능한 참가자인 안티몬 참가로 촉매시너지 효과까지 기대할 수 있는 FeSbO₄가 형성된

것을 확인하였다. [8]

반응온도를 변화시키면서 황화/재생반응을 시킨 결과를 Figure 5에 나타내었다. 이 경
우 반응온도 600℃에서 황화수(I) (sulfur loading)가 최고치를 보였고 이를 Table 1에 제

산하였다. 이 결과 최적의 반응온도가 600℃임을 알 수 있었다. 재생온도를 600℃로 고정

하고 황화반응온도만 변화시킨 결과를 Figure 6에 나타내었다. Figure 5과 비교했을 때

550℃ 이상에서는 황화수(I) (sulfur loading)의 차이가 10% 내로 미미하였기에 황화온도

와 재생온도를 다르게 할 필요는 없는 것으로 판단된다. TGA 결과에서 처음 5~8분가량

의 무게감소는 홀화체의 환원에 의한 것이다. 이론치인 3.3%가 넘게 환원이 이루어지는

이유는 Fe₂O₃가 Fe₂O₄, FeO 가지 환원이 이루어지는 결과이다. [9]

참고문헌
2. Sang-Kuk Woo, In-Sub Han, Seong-Ok Han, Ki-Seok Hong, Joon-Hwan Yang, Min-Seok Jeong, Dong-Soo Suhr, ENERGY R&D, Vol 17, No 384 (1995)

<Figure 1. SEM of Spray dried SiC>

<Figure 2. SEM of Sintered SiC at 2000℃>
<Figure 3. SEM of fresh NSFS3>

(Figure 4. XRD of fresh NSFS3)

(Figure 5. TGA of various reaction temp.)

(Figure 6. TGA of various sulfidation temp.)

<Table 1. Sulfur loading>

<table>
<thead>
<tr>
<th>시료명</th>
<th>황화온도 (℃)</th>
<th>재생온도 (℃)</th>
<th>1.5Cycle (%)</th>
<th>2.5Cycle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSFS3</td>
<td>500</td>
<td>500</td>
<td>12.5</td>
<td>16.4</td>
</tr>
<tr>
<td>NSFS3</td>
<td>550</td>
<td>550</td>
<td>15.6</td>
<td>14.3</td>
</tr>
<tr>
<td>NSFS3</td>
<td>600</td>
<td>600</td>
<td>18.4</td>
<td>17.7</td>
</tr>
<tr>
<td>NSFS3</td>
<td>650</td>
<td>650</td>
<td>16.4</td>
<td>16.3</td>
</tr>
<tr>
<td>NSFS3</td>
<td>450</td>
<td>600</td>
<td>9.6</td>
<td>12.8</td>
</tr>
<tr>
<td>NSFS3</td>
<td>500</td>
<td>600</td>
<td>14.0</td>
<td>14.3</td>
</tr>
<tr>
<td>NSFS3</td>
<td>550</td>
<td>600</td>
<td>16.0</td>
<td>15.4</td>
</tr>
</tbody>
</table>