A Preparation of Polyaniline/Sulfonated–SEBS Electrical Conducting Composites by an Emulsion Polymerization

Wan-Chul Cha, Moo Sung Lee, Jong-Ho Kim, Kap Seung Yang, Wan-Jin Lee
Faculty of Applied Chemical Engineering, Chonnam National University

ABSTRACT

The electrical conducting composites were prepared by an emulsion polymerization using aniline as a monomer, and poly(styrene-ethylene-butylene-styrene) (SEBS) or sulfonated-poly(styrene-ethylene-butylene-styrene) (SSEBS) as a matrix, dodecylbenzenesulfonic acid (DBSA) as both protonating agent and a surfactant and ammonium peroxydisulfate (APS) aqueous solution as an initiator in chloroform. In this reaction, the chloroform solution is formed as a continuous phase, while the aqueous solution act as a dispersed phase in the emulsion. The electrical conductivity of PANI-DBSA/SSEBS composites were increased about 1 order with the amount of PANI compared to PANI-DBSA/SEBS composites. The introduction of sulfonic group to SEBS results in the coulombic interaction between each phase of composites. As a results, the effect of miscibility was enhanced between each phase. The electrical conductivity was increased up to $2.56 \times 10^{-1} \text{ S/cm}$ with amount of 25 wt% PANI.

1. 서론

Polyaniline(PANI), polypyrrole, polythiophene 등과 같은 전도성고분자는 범용 고
분자와 비교하여 전기적 성질은 우수하지만 성형 가공성, 유연성, 용해성 등의 물리적 성질이 비교적 취약하기 때문에 전기·전자 등의 여러분야에 이용되기 위해서는
많은 제약을 받고 있다. 따라서 전도성고분자가 갖는 문제점을 해결하기 위한 방법
의 하나로 높은 전기전도성과 안정성을 갖는 전도성고분자와 기계적 성질이 우수한
일반 고분자와의 복합체에 관한 연구가 이루어지고 있다[1-4].

전도성고분자와 절연성고분자는 서로 상용성이 매우 떨어지기 때문에 상분리를 초
래하게 된다. 그러므로 이러한 상분리는 전도성복합체의 3차원적 망상구조의 형성에
저해를 가져오게 되므로 전기전도도는 떨어지게 된다. 따라서 이러한 조건에서 전기
전도도를 향상시키기 위해서는 전도성 고분자인 PANI의 양이 많이 요구되어 전도성
복합체의 기계적 물성은 취약하게 된다. 그러므로 PANI와 절연성고분자 간의 상용
성은 중대시키고 상분리를 최소화시키기 위해서는 두 상간의 인력을 줄여야 한다.
PANI 등의 전도성고분자를 camphorsulfonic acid (CSA)나 dodecylbenzene sulfonic
acid (DBSA)와 같은 큰 분자량의 유기산으로 도포시키면, 전도성고분자인 PANI의
인력이 감소하여 유기용매와의 가용성이 향상되어 절연성고분자와의 상분리를 최대
한 억제할 수 있다. 아울러, 절연성 고분자에 슬론산과 같은 음이온기를 도입시켜 서
로 다른 두상 간의 정전기적 인력을 유발시킴으로써 전기전도도의 향상 및 기계적 물성의 최적값을 얻을 수 있다.

전도성고분자를 제조하는 방법에는 일반적으로 산화중합법, 유화중합법 등이 있다. 특히, 유화중합법은 반응 중 계면활성제를 이용하여 미세용 형성시켜 colloid 입자를 잘 분산시켜 전도성고분자와 절연성고분자와의 상용성을 중대시킴으로써 기계적, 전기적 물성을 향상시킬 수 있는 방법으로서 여러분야에 이용되고 있다.

본 연구에서는 전도성고분자를 절연성고분자에 효과적으로 분산시키기 위하여 유화중합법을 이용하여 고무계제 중 기계적 성질이 우수한 tri-block 공중합체인 절연성 고분자인 poly(styrene-ethylene-butylene-styrene)과 monomer인 aniline과 계면활성제인 DBSA와 산화제인 APS를 사용하여 반응시킴으로써 전도성복합체를 제조하였다. 아울러 전기전도성을 향상시키기 위하여 SEBS를 속분화하여 sulfonated-SEBS(SSEBS)를 제조하여 절연성 고분자인 matrix로 사용하여 전도성 복합체간의 콜럼 상호작용을 유발시킴으로써 두 고분자상 간의 혼화성을 증대시켰다.

2. 실험

2.1. 재료

본 실험에서 poly(styrene-ethylene-butylene-styrene) (SEBS, Shell Chemical Co.)는 matrix로서, aniline (Aldrich Co.)은 전도성고분자 단량체로서, N-dodecylbenzene sulfonic acid (DBSA, Kanto Chemical Co.)는 aniline의 양성화제로서, Ammonium peroxydisulfate (APS, Kanto Chemical Co.)는 산화제로서 사용하였다. 또한, chloroform (Junsei Chemical Co., 순도 98%)와 1,2-dichloroethane Aldrich Co., 순도99%)는 용매로서 사용되었다. Sulfonating agent로는 chlorosulfonic acid (Kanto Chemical Co., 순도 98%)를 사용하였다.

2.2. SSEBS의 제조

Sulfonated-SEBS(SSEBS)를 제조하기 위하여 먼저 질소기류 하에서 환류 용융기와 교반기가 부착된 3구 flask에 10 wt% SEBS와 1,2-dichloroethane을 넣고 70 ℃에서 완전히 용해시켰다. 그 후, 상온까지 냉각시킨 후, 이 고분자용액을 격리하여 교반시키면서 속분기로 도입하기 위하여 상온에서 항량에 따른 chlorosulfonic acid를 천천히 적시시간 다음, 1 hr 동안 교반을 한 후 반응을 종결시켰다. 그 후, 반응된 고분자 용액은 용매를 사용하여 수확 세척한 후 24 hr 동안 진공오븐에서 건조시켜 SSEBS powder를 얻었다.

2.3. 전도성복합체의 제조

전도성복합체를 제조하기 위하여 교반기가 부착된 3구 flask에 10 wt% SEBS 또는 10 wt% SSEBS와 chloroform을 넣고 상온에서 완전히 용해시켰다. 여기에 전도성 고분자 단량체인 aniline과 양성화제이자 유화제인 DBSA와 용매를 넣고 1시간 동안 혼합시키려 암질간의 형성이 확인된 용액을 넣은 후, 산화제인 ammonium peroxydisulfate (APS) 수용액을 천천히 적시시간 다음, 12시간 동안 반응을 진행시켰다. 그 후, 매탄을 사용하여 수확 세척한 후 24시간 동안 상온에서 건조한 후 녹색의 전도성 복합체를 얻었다. 반응에서 사용된 산화제인 APS의 양과 양성화제인 DBSA의 양은 aniline에 대하여 1 mol ratio로 하였다. 또한 aniline의 함량은 5, 10, 15, 20, 25 wt%로 하였다. 전도성 고분자 복합체는 hot press (80℃, 4000psi)를 사용하여 약 300μm 두께의 필름으로 성형하고 각종 물성을 측정하였다.
3. 결과 및 고찰

3.1. PANI의 양성화

PANI와 같은 전도성 고분자는 분자간의 인력이 매우 커서 일반 유기 용매에 쉽게 용해되지 않는 단점을 가지고 있으나, DBSA와 같은 분자량이 큰 유기산으로 도핑시키면 분자간의 인력이 작아져 가용성 PANI 착색을 얻을 수 있다. 이것은 염산과 같은 적은 분자로 도핑시켰을 때보다도 열적으로 안정한 성능을 지니며 가용성이 증대됨으로써 전도성 복합체의 제조시 상용성이 향상되어 전기전도도 증가의 결과를 제공한다. Emeraldine base 상태의 PANI의 전기전도도는 매우 작지만, DBSA로 양성화시켰을 때 bipolaron이 형성되고 emeraldine salt 상태가 되어 전기전도도를 갖게 된다.

3.2. SSEC의 술프화도

SSEC의 술프화도를 측정하기 위하여 먼저 CSA 농도에 따른 1 g SSEC를 chloroform에 완전 용해시킨 다음, 소량의 폐놀프탈레인을 넣고 교반시키면서 적색이 될 때까지 0.01 N NaOH 범용을 용액으로 적정하였다. 술프화도는 SSEC mol %와 NaOH의 mol % 비로 계산하였다. 0.3 mol CSA로 술프화한 SSEC의 술프화도는 30 %이었다.

3.3. PANI 함량 따른 전기전도도

Fig. 2는 PANI-DBSA/SEBS 또는 PANI-DBSA/SSEC의 전도성 복합체에 대하여 PANI 함량에 따른 전기전도도의 변화를 나타낸 것이다. 전반적으로 PANI의 함량이 증가함에 따라 전기전도도가 증가함을 알 수 있다. PANI 함량이 5 wt%일 때 전기전도도는 매우 낮으며 이는 PANI의 network가 잘 형성되지 않아 캐리어의 이동이 매우 혼들기 때문에 것으로 생각된다. PANI 함량이 15 wt% 이상에서는 전기전도도가 거의 포화 상태에 도달함을 볼 수 있다. PANI의 함량 13 wt% 근처에서는 PANI 구성입자들이 방향구조를 잘 형성하여 분자간의 캐리어 이동이 원활해져서 최적최소 혼합비 (percolation threshold)에 의한 전기전도도를 나타내는 것이라고 생각된다. DBSA로 도핑시킨 PANI의 함량이 25 wt%일 때 전도성 복합체의 전기전도도는 2.56×10^{11} S/cm까지 증가하였다.

3.4. Sulfonation에 따른 전도도의 향상

Fig. 2에서 PANI-DBSA/SSEC 복합체의 전기전도도가 PANI-DBSA/SEBS 복합체의 전기전도도보다 PANI의 함량에 따라서 1 order까지 향상된 것을 알 수 있다. 이는 SSEC의 술프기 영향에 따른 두 고분자간의 혼화성이 증가하였기 때문이다. 부연하자, 친수성기를 가진 SSEC의 coulombic interaction의 영향으로 인해 아마 SSEC와 PANI 사이에 친화성이 향상되어 전기전도도가 증가하였음을 알 수 있다. 결과적으로 25 wt% PANI의 함량에 있어서 PANI-DBSA/SEBS 복합체의 전기전도도가 3.48×10^{2} S/cm인 것에 비하여 PANI-DBSA/SSEC 복합체의 전기전도도는 2.56×10^{11} S/cm로서 1 order의 차이를 보였다.

3.5. 전기전도도의 온도의존성

Fig. 3는 aniline을 DBSA로 양성화 시켰을 때 열적안정성과 온도증가에 따른 전기전도도의 변화를 알아보기 위해 20℃~160℃의 온도 범위에서 전기전도도를 측정한 결과이다. 온도가 증가함에 따라 전기전도도는 약간 감소하게 된다. 그 이유는 온도가 올라가면서 열전동이 증가하여, 전자가 열전동과 충돌하는 횟수가 늘어나게 된다. 결과적으로 온도가 증가함에 따라 전기전도도는 약간 감소하게 된다.
감 사

참고문헌

Fig. 1. FT-IR spectra of protonated PANI in chloroform.

Fig. 2. Electrical conductivity of the conducting polymer composite as a function of sulfonation

Fig. 3. Electrical conductivity changes of PANI/SEBS composites between 20℃ and 160℃. (a)SEBS (b)SSEBS

(●: 25wt%, ■:20wt%, ▲:15wt%, ○:10wt%, ◆:5wt% PANI contents)