Hydrodynamic Characteristics of a Three-Phase Inverse Fluidized Bed Reaction Process

Hee-Young Park · Yong-Jun Cho · Chan-Gi Lee · Yong Kang
Dept. of Chemical Engineering, Chungnam National University, Taejon 305-764, Korea

ABSTRACT

Hydrodynamic characteristics, such as pressure drop, bed expansion and phase holdup, have been investigated in a three-phase inverse fluidized bed reaction process whose diameter and height are 0.152m and 2m, respectively. Experiments were carried out by using low density polypropylene (s=877.3kg/m3) and polyethylene (s=966.6kg/m3) beads. The data of bed expansion and static pressure drop were used to determine the minimum fluidization velocity and individual phase holdups. It has been found that the bed porosity and liquid holdups increase with increasing gas and liquid velocities. The effects of gas velocity are more important on the bed expansion than these of liquid velocity in a three-phase inverse fluidized bed.

1. 서론

전통적인 삼상유동층에서는 고체입자의 밀도가 연속상(Continuous Phase)인 액체보다 크며, 액체와 고체를 역방향 혼합(Cocurrent)로 혼합함으로써 유동화 된다. 하지만 삼상 액 유동층은 고체입자의 밀도가 액체보다 작기 때문에 고체는 역방향에서 역방향으로, 액체는 원방향에서 역방향으로 환로는 원방향으로 역방향으로 흘러 유동화 된다. 액체는 고체입자에 작용하는 순간부력에 반대방향으로 환로되는

이러한 삼상 액 유동층은 전통적인 삼상 유동층의 장점인 접촉 효과가 높고, 열 및 물질 전달 효과가 향상되다는 장점 외에도 중력이 아닌 부력에 반하여 유동화 시키는 역 유동화의 특징상 느린 액체 유속으로 유동화가 되기 때문에 에너지 소비가 낮으며, 고체 입자의 마모를 최소화 할 수 있다는 점들이 있다. 또한 고체 유속만으로도 유동화가 가능하기 때문에 생물학적 폐수처리, 생화학 그리고 다른 산업에 응용되어있다[5]. 특히, 삼상 액 유동층은 생물학적 필름(biofilm)의 투과를 미세하게 조절할 수 있기 때문에 생물학적 폐수처리 분야에서 매우 유용하게 응용되고 있다[6, 7].

지금까지, 기체-액체상이나 액체-고체상의 접촉을 다루는 이상 역 유동층(Two-Phase Inverse Fluidized Bed)이나 난류 점착층에 대한 연구는 많아 이루어지고 있으나 기체-액체-고체의 상들이 접촉하는 삼상 역 유동층에 대한 연구는 매우 미흡하여 이제 시점단계에 있는 실정이다. 따라서, 본 연구에서는 삼상 역 유동층의 중요한
공학적 자료인 수력학적 특성과 각 상당들의 제류량 특성에 대해 고찰하였다.

2. 실험
본 연구에서 사용된 실험장치의 개략도를 Fig. 1에 나타내었다. 유동 입자로는 877.3kg/m³의 밀도를 갖는 구형의 Polypropylene(dp : 4mm)과 966.6kg/m³의 밀도를 갖는 Polyethylene(dp : 4mm)을 사용하였고, 연속액상(continuous liquid phase)으로는 물을, 분산성(dispersed phase)으로는 공기를 사용하였다.

실험장치는 0.152m ID를 갖는 2m 높이의 아크릴 탈린을 사용하였고 실험관영역의 높이는 지지대(retaining grid)로부터 기체 분산관까지의 거리인 1.6m이다.

유동입자를 지지하기 위한 지지대는 스테인레스 스틸로 된 3mm의 구멍을 갖는 체(sieve)를 사용하였는데 이것은 지지대 위로 직접된 액체 수위를 유지함으로써 유동입자를 일정 높이에서 지지해주는 역할을 하며, 또한 액체 분산관에서 나오는 물의 jet 횡단에 의해 직접 입자의 유동화 되는 것을 방지할 뿐만 아니라 액체의 jet호흡으로 인해 생성된 기포의 분산을 위해서 필요하다. 이 지지대는 아주 빠른 기체 유속에서는 지지대 바로 밑에 Slugging 현상을 방지하기 위해 제거할 수 있다[6].

물은 3mm 구멍을 가진 분산관을 통해 위에서 아래로 균일하게 호르도록 했으며, 공기는 1mm 구멍을 가진 분산관을 통해 아래에서 위로 호르도록 했다. 기체와 액체의 유속을 측정하기 위해서는 flowmeter를 사용하였으며 압력 tap은 작업영역의 압력을 0.4m의 간격을 두고 설치되었다. 상상 역 유동층의 상추류량은 정방향 이측발방(Slant pressure drop method)을 이용하여 결정하였는데 유동층의 압력 감소는 물을 사용한 U자 마노미터를 사용하여 측정하였다.

조업범위는 최소유동화 속도를 결정하기 위하여 약간 작은 유속에서부터 시작하였으며 액체 및 기체 유속이 5cm/s를 넘지 않은 범위에서 실험하였다. 증의 공통점은 중평창을 직접 가시적으로 측정하기 위해 탐출에 놓급을 끌어 넣어 보다 정확한 중평창 높이를 얻을 수 있도록 한 후 결정되었다.

3. 결과 및 고찰
유동층 반응기의 설계와 대형화에 대해 중평창 특성은 매우 중요한 인자이다. 역이상 유동층에 대한 중평창 및 압력 강하에 대한 액체 유속의 영향을 그림 2와 3에 4mm LDPE와 4mm Polypropylene을 비교하여 나타내었다. 그림 2에서 알 수 있듯이 상대적으로 무거운 밀도를 갖는 4mm LDPE의 중 평창이 보다 가벼운 4mm Polypropylene 보다 더 잘 이루어진다는 걸 알 수 있다. 이는 밀도가 가벼움수록 부력이 더 커지기 때문이다. 고체의 밀도가 액체의 밀도와 비슷해 질수록 유동화 되기도 쉽으며, 따라서 4mm LDPE의 중평창은 더욱 급격히 이루어 질을 알 수 있다. 또한 두 입자 모두 최소 유동화 속도 이상의 액체 유속에서 급격히 축평창이 이루어질 점을 알 수가 있다. 이는 이 액체 유속 이상에서부터 입자간 향력과 입자에 작용하는 부력보다 액체 유속이 크다는 걸 의미한다.

그림 3에 압력 강하에 대한 액체 유속의 영향을 나타내었는데 LDPE와 Polypropylene의 최소액체유동화 속도가 각각 0.8, 1.2cm/s로 나타났다. 최소액체유동화 속도(Ulfn)는 높은 압력강하중의 무게에 일치할 때의 속도로 규정된다[1]. 따라서 최소액체유동화 속도는 중간 압력 강하가 최소가 될 때의 액체 속도와 일치한다. 그림 2와 3에서 총이 평창하는 액체 유속과 최소유동화 속도가 비슷함을 알 수 있다. 또한 보다 무거운 밀도를 갖는 4mm LDPE의 압력 강하 보다 가벼운 밀도를 갖는
4mm Polypropylene의 압력 강하가 더 높게 나타났는데 이는 역시 두 고체입자 간의 밀도차에 기인한 것이다.

역 삼상 유동층에서의 개별 상 체류량들에 대한 액체 유속과 기체유속의 영향을 그림 4와 5에 나타내었다. 그림 4와 5에서 두 고체 입자 모두 액체 유속과 기체 유속이 증가함에 따라 기체 체류량이 증가하며, 체류량의 증가 정도는 4mm LDPE가 4mm Polypropylene 보다 급격함을 알 수 있다. 그림 4는 액체 유속이 0.7cm/s인 경우, 기체 유속이 증가함에 따른 체류량의 변화를 나타내었는데 기체 유속이 증가함에 따라 총평가 장이 일어남으로써 고체 체류량이 급격히 감소하고 액체와 기체 체류량이 증가함을 알 수 있다. 상대적으로 물과 균질한 밀도를 가지는 LDPE의 경우 Polypropylene 보다 유동화가 상대적으로 잘 이루어지며 충정량 또한 기체 유속이 1cm/s 정도에서 거의 다 이루어지기 때문에 액체 체류량의 경우 초기에 급격한 상승을 그리다가 1cm/s 이후의 기체유속에서 가속기가 완만해진다. 기체 유속이 증가함에 따라 액체 체류량 역시 증가하는데 이는 기체 액체간의 병류효과에 기인한다. 그림 5는 기체 유속이 0.5cm/s일 때 액체 유속에 따른 체류량의 변화를 나타낸 것이다. 그림에서 알 수 있듯이 액체 유속이 증가함에 따라 액체 체류량과 기체 체류량 모두 증가한다. 기체유속에 더 활발히 충정하는 이유가 일본에 액체 유속에 따른 체류량의 변화량이 기체 유속에 따른 체류량의 변화보다 완만하다는 점 알 수 있다. 액체 유속이 증가함에 따라 기체 체류량이 증가하는 것 역시 액체-기체간 병류효과에 기인한 것이며 각 체류량의 변화 정도 또한 그림 5와 마찬가지로 LDPE가 Polypropylene보다 더 크다.

이상과 같은 실험에서 다음과 같은 결론을 내릴 수 있다.
1. LDPE 및 Polypropylene 고체 입자의 최소 액체 유동화 속도를 각각 0.8cm/s, 1.2cm/s와 같이 구하였다.
2. 상대적으로 무거운 밀도의 고체 입자, 즉 액체와 유사한 밀도를 갖는 고체입자가 역유동화 하기에 더 용이하였다.
3. 삼상 역 유동층에서 기체와 액체 유속이 증가함에 따라 액체 및 기체 체류량 모두 증가하였는데 이는 기체-액체간 병류효과에 기인하는 것으로 사료된다.
4. 삼상 역 유동층의 충평가에 대한 영향은 액체 유속보다는 기체 유속의 영향이 더욱 큰 것으로 나타났다.

참고문헌
Fig 1. Experimental apparatus
1. Liquid distributor 6. Liquid flowmeter
2. Bed support 7. Liquid reservoir
3. Gas distributor 8. Bypass pump
4. Liquid collector 9. Manometer
5. Gas flowmeter 10. Compressor

Fig 2. Effects of U_g on bed height in the inverse liquid-solid system
- Polypropylene - Polyethylene

Fig 3. Effects of U_g on pressure drop in the inverse liquid-solid system
- Polypropylene - Polyethylene

Fig 4. Effects of U_g on three-phase holdups in the inverse three-phase system ($U_l=0.7$m/s)
- Polypropylene - Polyethylene

Fig 5. Effects of U_g on three-phase holdups in the inverse three-phase system ($U_l=0.5$m/s)
- Polypropylene - Polyethylene