전체반응후 발생되는 산류염소제거

화봄구·조성규·정진영·이성우·임준혁·이병선
부경대학교 화학공학과

The removal of the residual chlorine in sea water of recirculating aquaculture were investigated

Heo-Hong Gu·Jo-Sung Kyu·Jun-Heok·Byung-Sun Lee
Dept. of Chem. Eng., Pukyong Univ., 608-739, Pusan, Korea

ABSTRACT

In this study, I would like to remove a residual chlorine in seawater link with the study to have practical use wastewater treatment process of circulating filterable aquaculture. Form of activated carbon which is selected to be suitable in circulating filterable process is a granular activated carbon, and the specific character of residual in activated carbon diameter and hydraulic residence time, early concentration of wastewater is experimented in a continuous fixed reactor. In addition, the specific character of residual chlorine reaction of activated carbon particle with time is experimented in a batch reactor. And the experimental result is considered in comparison with adsorption and reactive mechanism of residual chlorine. As an experimental result, A removal residual chlorine was showed to be different usual adsorption, and removal efficiency increased by being small of free chlorine and activated carbon diameter, by raising hydraulic residence time. Removal of residual chlorine by activated carbon was showed a lot higher removal efficiency, and considered to be effective in removal of unreacted residual chlorine.

1. 서론

20세기 이후 사회가 발전하며 생활수준이 향상되었고 이에 따라 식생활의 다양화와 고급화 추세가 계속되고 있다. 생활수준의 향상에 따라 어류의 소비량도 증가하고 있는 반면에 전 세계적으로 연안의 생태계 파괴와 환경변화로 어류 포획량은 감소하고 있는 추세이다. 따라서 수산정책은 잡는 어업에서 기르는 어업, 즉 양식산업으로 변화하고 있다. 그러므로 양식 생산성을 높이고 적조 동 오염폐해를 극복하기 위해서는 인위적으로 수질을 관리하고 어류를 고밀도로 양식하는 양식공정이 필요하다. 현재 이용되는 대표적인 양식공정으로써 순환식과 양식을 들 수 있다. 그러나 이러한 양식공정은 누적되는 어류 배설물 및 미성숙된 사료에 의해 발생되는 암모니아로 인해 순환수의 수질이 악화되며
어류에 치명적인 영향을 미치므로 완전한 고밀도 양식 환경을 유지하기 위해서는 암모니아 제거를 위한 적절한 수처리 공정이 요구된다.[1][2] 양서강 폐수에서 암모니아를 제거하는 방법 중에서 최근에 연구가 활발하게 진행되고 있는 공정으로는 전해법이 있다. 전해법은 해수를 전기분해할 때에 억류에서 생성되는 화아염소산(HOCl) 또는 카아염소산 이온(OCl⁻)을 이용하여 암모니아를 질소가스로 분해하는 방법으로 공정이 간단하고 전기 소모량이 작으며 부설되는 용소를 이용하여 살균효과도 얻을 수 있다. 전해법으로 암모니아 제거가 없어 발생되는 염소는 해수 중에 용존 상태로 있을 경우에 아모니아 양식에 큰 영향을 미친다. 미국 EPA에서는 잔류염소의 경우 허용기준치를 4μg HOCl/L 이하로 권장하고 있다.[3] 그러나 암모니아의 제거와 살균을 위해서는 양동이 약간 과량의 잔류염소를 생성할 수밖에 없다. 따라서 전해공정의 후처리로 잔류염소의 제거는 필수적이다. 용액 중의 잔류염소 제거하는 방법으로는 활성탄을 이용한 탈염소법과 포기법(Aeration), 황화질(Ferrous sulfate)법, 과산화수소(Hydrogen peroxide)법, 황화나트륨(Sodium thiosulfate, Na₂S₂O₃)법, 이산화황(Sulfur dioxide)법 등이 있다. 이 중에서 활성탄법을 계획한 나머지 탈염소법은 반응과정에서 황화물을이나 기타 화합물이 발생하므로 억류장에 적용하기에는 적합하지 않다.

따라서 본 연구에서는 순환어과식 양서강의 폐수처리공정을 실용화하는 연구의 일환으로 해수 중에 잔류염소를 활성탄으로 제거하고자 하였다. 활성탄의 형태는 순환어과식 공정에 적합하도록 임상활성탄을 제조하여 활성탄의 입공과 수력학적 체류시간 및 폐수의 초기농도에 따른 잔류염소 제거특성을 연속적 고정충반응기에서 실험하였다. 또한 횡단적 반응기에서 시간에 따른 활성탄 입자의 잔류염소 반응특성을 실험하였다. 그리고 실험결과를 흡착 및 잔류염소의 반응 메커니즘과 비교하여 고찰하였다.

2. 실험

2.1 실험장치

입상 활성탄을 충진한 고정충 반응기에서 해수 중의 잔류염소 제거를 실험하였다. 반응 장치는 크게 시료 저장조 및 링프, 활성탄 합착관과 시료채취부로 구성되어있다. 조제 해수 저장조에는 해수의 부식 격리도를 수지피막을입힌 흙은수조를 사용하였고 해수의 공급을 위해 정량펌프(PERISTALTIC PUMP Model PST-100, Iwaki, Japan)를 사용하였다. 적산유량을 이용하여 유량을 측정하였다. 고정충의 유체흡수는 상향호름식으로 하였다. 고정충 반응기의 출력에는 sampler를 설치하여 시간에 따른 연속적인 잔류염소의 변화를 측정할 수 있도록 하였다.

2.2 실험방법

연속적 실험은 연속적 장치에 평균 입공이 서로 다른 활성탄을 충진하고 해수 중에
전류참소의 농도 변화, 반응기내 유속변화(체류시간 변화) 및 전진암자의 입경변화에 따른 전류참소 제거효율을 실험하였다. 우선 전류참소를 함유한 조제 해수와 같은 농도의 NaCl 용액에 1000 ppm의 카이아염소산(Ca(ClO)₂) 용액을 주입하여 반응시켰다. 전류참소농도 변화에 따른 영향을 알아보기 위해 전류참소의 농도는 50, 75, 100 ppm에 갖추었다. 입상 활성탄은 국내 정수장에서 주로 사용하고 있는 목탄계 활성탄(신기화학, )을 사용하였다. 활성탄은 표면에 묻어있는 먼지와 불순물 제거하기 위해 증류수로 깨끗이 씻어내고 100℃ 이상의 온도에서יות 후 이를 24시간 건조기에 넣어 건조시킨 후 다시 캐터리에서 보관하여 사용하였다. 환경의 입경은 실험 초기에 30, 40, 50 mesh의 세 가지를 선정하여 입자 크기의 영향을 실현하였다. 또한 반응기 내 체류시간은 240, 360 sec로 실험하였고 이 때의 유량은 16.7 ml/min 및 25ml/min이었다. 반응기 출구에서 전류참소농도와 전류참소 체류율은 20분 간격으로 240분까지 측정하였다. 이에 미반응 전류참소는 총 전류참소분포로 분석하였다.

3. 결과 및 도론
고정층 실험으로 50, 75, 100ppm의 전류참소를 체류시간은 240, 360 sec의 조절조건에 따라 활성탄 입자가 각각 40, 50mesh으로 채득된 종을 동과시켰을 때의 시간에 따른 제거 성능을 측정하여 Fig. 1과 Fig. 2에 나타내었다. 그 결과 시간의 경과에 따라 전류참소 제거능력이 저하가 일어났다. Fig. 1과 Fig. 2를 비교하면 동일한 활성탄양에 대해 평균입 경이 감소할수록 전류참소 제거능력의 저하가 완만해지는 것을 볼 수 있다. 또한 활성탄의 평균입경이 동일한 경우에 가진 경우 반응기에 유입되는 염소의 농도가 높음수록 활성탄의 염소제거능력의 저하가 빠르다고 있음을 알 수 있다. Fig. 3과 Fig. 4는 시간에 따른 염소제거효과를 반응기내 체류시간으로 구분하여 나타내었다. 이 결과에서 HRT가 적을수록 활성탄의 염소제거능력저하가 보다 빨리 일어나고 있음을 알 수 있다. 증분한 시간경과후 HRT 6min에서의 40mesh(50ppm)과 HRT 4min 50mesh(50ppm)는 동일한 염소제거효과를 나타내었다. 이것으로 볼 때 반응기에 유입되는 유리염소의 양이 동일할 경우 활성탄의 평균입경을 크게하고 HRT를 증가시킨다면 반응기내의 활성탄의 채화장을 늦추는 것을 알 수 있다. 활성탄에 의한 전류참소제거는 중상의 흡착과는 다르게 나타났으며, 활성탄의 제거능력은 원수의 유리염소 양, 온도, pH, 동수유속, 입경 등에 따라 다르게 나타났다. 활성탄과 유리염소의 반응은 식 (1) 및 (2)와 같다.[4][5]

\[
C^+ + HOCl \rightarrow C^*O + H^+ + Cl^{-} \tag{1}
\]
\[
C^+ + 2Cl_2 + 2H_2O \rightarrow 4HCl + CO_2 \tag{2}
\]

여기서 \(C^+\)와 \(C^*O\)는 활성탄과 반응기의 표면에 산소가 결합된 것을 나타내며, 유리염소의 농도가 높을 경우 유리염소가 활성탄과 반응하여 활성탄 표면에 결합된 산소가 CO나 CO\(_2\)로 배출된다. 따라서 이 반응에서 1개의 chlorine이 0.00845개의 탄소를 소모하게되며 재생이 불가능하게 되는 단점이 있다. 따라서 소모된 활성탄을 재생하기는 불가능하므로 활성탄에 유입되는 미반응 전류참소의 농도를 최소화하는 연구가 이루어져야 할 것이다.
참고문헌

Fig. 1 Removal efficiency of residual chlorin with activated carbon of 40mesh.
Fig. 2 Removal efficiency of residual chlorin with activated carbon of 50mesh.

Fig. 3 Removal efficiency of residual chlorin with activated carbon(HRT4min)
Fig. 4 Removal efficiency of residual chlorin with activated carbon(HRT6min)