제주 송이로부터 Na–P1 세올라이트의 합성

전병은・김미영・안병준・이민규*・김상규**
전북대학교 화학교육과, *부경대학교 화학공학과, **제주대학교 환경공학과

Synthesis of Na–P1 Zeolite from Cheju Scoria

Byoung Eun Jeon, Mi Young Kim, Byoung Joon Ahn, Mingyu Lee*, Sangkyu Kam**
Dept. of Chemistry Edution, Chonbuk Nat’I University
*Dept. of Chem. Eng., PuKyong Nat’I University
**Dept. of Environ. Eng., Cheju Nat’I University

ABSTRACT

Na–P1 Zeolite was synthesized from Scorias, which are found in several places of Cheju Island. Experimental parameters such as temperature, alkali concentration and reaction time were controlled to find out the best condition of zeolite synthesis. SEM, EDX and XRD techniques were employed to characterize the synthesized product. Na–P1 zeolite was obtained by using a 1–2 M NaOH solution at 100–120°C. The results were compared with pure Na–P1 zeolite synthesized from water glass, sodium aluminate and water.

1. 서론

제주는 화산지역이라는 지형학적 특성 때문에 송이가 다양 산재해 있고 부존 친연자원의 활용이라는 측면에서 송이의 이용에 대한 상당한 관심이 이루어지고 있다. 따라서 송이에 다양 함유 되어있는 실리카와 알루미나 성분을 처리하여 중금속 흡착능이 우수한 세올라이트 유사물질로 만들 수 있다면 친연자원의 활용에 대한 중요한 기초 연구가 될 것이다. 제주 송이는 비중이 모래에 비해 가벼운 매질이며 흔히들도 [5,6]로서 상당히 높은 뿐만 아니라 기공율도 크다. 또한 송이의 주성분은 지역에 따라 함량은 다르지만 실리카와 알루미나로서 모래 및 석탄제와 비슷한 구성인 흔한 구성물을 하고 있다.

본 연구실에서는 제주 봉개동 중산간 지방에서 채취한 송이를 이용하여 소달라이트, analcime, cancrinite 및 nepheline hydrate를 합성할 수 있었으며, 아주 좋은 실험조
전화에서 Na-P1도 만들 수 있었다. 여기서는 제주도의 5개 지역으로부터 채취한 속이를 사용하여 패스 정화용 및 토양 개량제 등으로 이용 가능성이 높은 Na-P1을 주로 만들고자 하였다.

2. 실험

본 실험에서는 시료로 사용한 속이는 속당, 동광, 금악, 상명, 봉개등으로부터 채취한 것으로 제울라이트 합성 실험에 용이하도록 시료를 잘게 분쇄하여 입자 크기에 따라 분포를 표준화하였다.

일정량의 속이에 농도가 다른 NaOH용액을 가하여 온도와 시간을 변화시켜 가면서 수열 반응시간 다음, 반응하지 않고 남아있는 NaOH는 증류수로 5회 반복하여 충분히 씻고, 건조시킨 뒤 테이시케이터에 보관하였다. X-선 회절법, 전자현미경 및 EDX 방법에 의하여 생성된 제울라이트의 확인 및 결정모양을 조사하였다.

3. 실험결과 및 고찰

![XRD patterns of several Scorias](image)

FIG. 1 XRD patterns of several Scorias
Pl, Plagioclase; Py, Pyroxene; H, Hematite.
FIG. 2는 D 지역에서 채취한 속이를 가지고 110℃에서 각 농도별 (1M-5M)로 168시간 반응시킨 생성물들의 X-선 회절패턴이다. 그럼에서 보듯이 낮은 농도인 1M과 2M에서는 Na-P1, 3-4M에서는 JBW와 SOD가, 그리고 5M에서는 주로 SOD가 관찰 된다. FIG. 3은 위에서 얻어진 생성물들의 전자 현미경 사진으로서 종류별로 전형적인 SOD, JBW 및 Na-P1 세올라이트의 결정모양을 보여주고 있다.

Table. 1의 원소 조성만을 가지고 비교한다면 37-45%로 Si의 조성은 거의 일정하고, Al의 조성은 15-28%로 변화가 다소 크게 나타난다. 특히 Al 함량이 큰 C, E 지역의 경우 Na-P1 생성이 양호하지 못하고, Al이 15.6 및 19.0으로 비교적 작은 B, D 지역의 경우 Na-P1 함량이 아주 잘 된다. EDS 분석에 의하면 Na-P1 세올라이트의 Si/Al 비율 대략 1.6이고 Si이 모두 Na-P1 생성에 참여한 다면 필요한 Al 함량은 23-28%가 나온다. 세올라이트 생성에 기여하는 Si은 대략 60% 내외이므로 37-45%의 Si 중 22-27%만이 관여한다고 보면 필요한 Al 함량은 14-17%가 되므로 이 값에 가까운 B, D 지역의 속이가 최적의 Si/Al 반응물 조성을 만족시키는 것으로 생각된다. 즉, 표에 나타난 Al은 모두 용해성이 크고 세올라이트 생성에 기여할 수 있는 것으로 해석되었다.

FIG. 3 SEM photographs of the synthesized SOD (top), JBW (middle) and Na–P1 zeolite (bottom).
Table 1. Elemental Composition of Cheju Scorias (Atomic %)

<table>
<thead>
<tr>
<th>지역</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.9</td>
<td>4.7</td>
<td>21.0</td>
<td>40.8</td>
<td>0.5</td>
<td>1.5</td>
<td>8.1</td>
<td>2.7</td>
<td>0.5</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>6.8</td>
<td>5.1</td>
<td>19.0</td>
<td>43.4</td>
<td>0.6</td>
<td>1.6</td>
<td>8.0</td>
<td>2.9</td>
<td>0.4</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.8</td>
<td>6.0</td>
<td>22.4</td>
<td>37.3</td>
<td>0.9</td>
<td>1.0</td>
<td>8.9</td>
<td>3.3</td>
<td>0.3</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>6.0</td>
<td>8.5</td>
<td>15.6</td>
<td>45.5</td>
<td>1.9</td>
<td>1.1</td>
<td>11.3</td>
<td>2.1</td>
<td>0.8</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>7.4</td>
<td>5.9</td>
<td>28.4</td>
<td>42.7</td>
<td>1.1</td>
<td>1.9</td>
<td>7.4</td>
<td>2.3</td>
<td>0.2</td>
<td>0.1</td>
<td>10.3</td>
</tr>
</tbody>
</table>

FIG. 4 XRD patterns of the synthesized zeolites at 2M NaOH concen’t, 110°C during 72 hours

FIG. 5 XRD patterns of the pure zeolites obtained at 2M NaOH concen’t, during 72 hours

FIG. 4는 지역별 송이의 2M NaOH 농도에서 72시간 동안 합성된 생성물의 X-선 회절 패턴으로 A 지역을 제외하고는 Na-P1이 잘 합성됨을 보여주고 있다. 송이의 Na-P1 합성조건을 비교하기 위하여 FIG. 5에 물유리, 알루민산 나트륨 및 물의 순수한 반응물로부터 온도변화에 따라 합성된 생성물의 X-선 회절 패턴을 나타냈다.

감사

본 연구는 제주 중소기업청 및 교육부의 기초과학연구소 지원(BSRI-98-3430)에 의하여 수행되었으며, 이에 감사드립니다.

4. 참고문헌
1. 전병은, 석사학위논문, 전북대학교, 1999
2. 윤정수, 복제주군 지역 기생화산(오름)에 관한 학술조사 보고서, 복제주군, 1991.