Preparation of Spherical Alumina Particle from Aluminum Alkoxide

Jin-Hwa Lee · Heung-Seon Shin · Ju Namgung · Dong-Kyu Lee
Dept. of Ind. Chemical Eng., Chungbuk University
*Cosmetic Research Institute, Coreana Cosmetics Co., Ltd

ABSTRACT

Spherical alumina powders were prepared by the controlled hydrolysis of aluminum iso-propoxide, aluminum sec-butoxide and aluminum tri-ethoxide in a solution consisting of various alcohol and acetonitrile. The reagent concentration influenced on the particle size, size distribution, and morphology. Sub-micro-sized alumina particles grew with increasing the concentration of hydroxypropylcellulose. Particle size increased when alkoxide concentration was increased and decreased when amount of H$_2$O was increased. The prepared particle morphology was not spherical when alcohol/acetonitrile volume fraction was decreased over than 1 and when ethanol was used as a solvent. When aluminum tri-ethoxide was used as aluminum source, size and distribution of spherical alumina powders were decreased and sharped more than aluminum iso-propoxide, and aluminum sec-butoxide used as an aluminum source. As amorphous powders were crystallized into γ-alumina at 1000°C and converted into α-alumina at 1150°C. The particle morphology was retained after crystallization α-alumina.

1. 서 론.

입자 또는 분체는 전통적으로 우리의 식생활, 보건환경, 자연현상에서 생활과 밀접한 관계를 맺고 있다. 최근에는 입자에 고무가까지의 기능을 부여한 기능성 미분체를 상업적으로 생산하는 일에 관심을 가지게 되었다. 예를 들면 금속하게 확산되고 있는 레이저 프린터에 사용되는 토너나, 고밀도 자기 기록매체에 사용되는 자성입자, 광기기 기록 매체, 모니터에 사용되는 미립자 형광물질 등 주로 컴퓨터, 정보기록 소재와 관련해서 많은 기염과 연구자들이 관심을 가져왔다.

이렇게 널리 쓰이는 입자의 제조방법중 액상법은 금속염으로부터의 균일 침전법, 금속 알콕사이드의 가수분해반응, 중축합반응을 이용하는 줄-겔법, 용매 추출법으로 크게 구별된다. 줄-겔법이란 금속 알콕사이드를 용용물질로하여 가수분해 및 중축합반응에 의해 금속산화물 또는 수산화물을 줄로 만든 다음, 적당량의 물을 첨가하여 건화시킨 뒤 여러 단계의 열처리 과정을 거치 비정질, 다결정체, 유리 등을 만들어내는 새로운 무기소재 제조방법이다. 줄-겔법은 보다 제어된 분체를 비교적 자유로운 방법에서 생성할 수 있으며 제품의 균질성이 높고 생산되는 분말의 속도도 높으며 중래의 용융법 등에서 만들 수 없는 새로운 조성의 세라믹스를 만들 수 있는 특성이 있다[1~3].

본 연구는 분산체로 hydroxypropylcellulose와 알코올과 acetonitrile로 이루어진 용매에
서의 aluminum sec-butoxide, aluminum iso-propoxide와 aluminum tri-ethoxide의 가수분해에 의한 구형 알루미나 입자체조에 대해 출발물질의 농도, 수성 시간, 분산체의 영향, 알코올의 종류와 반응온도 및 수성온도가 생성물에 미치는 영향을 검토하여 고기능성의 구형 알루미나 분체를 제조하고자 하였다.

2. 실험.
본 연구에서 사용된 각각의 알룩사이드는 aluminum iso-propoxide(이하 AIP라 약함), aluminum sec-butoxide(이하 ASB라 약함), aluminum tri-ethoxide(이하 ATE라 약함)이며, 용매로는 n-octanol, ethanol, heptanol, decanol, iso-propanol과 acetonitrile을 사용하였고 가수분해를 위한 온도 3차 탈아인 증류수를 사용하였다. 분산체로는 평균 분자량이 100,000인 hydroxypropyl cellulose(이하 HPC라 약함)를 사용하였다. 용액의 안정화시 초음파세척에 사용된 분산 용매로는 iso-propanol을 사용하였다.

각각의 알룩사이드를 이용한 실험방법은 알룩사이드 농도, 혼합용매중 가수분해에 필요한 물을 포함한 acetonitrile 양의 변화, 반응 및 수성시간과 온도 변화에 따른 분체 제조 결과를 알아보고자 하였다. 실험과정에서 n-octanol에 각각의 알룩사이드와 HPC를 혼합하고 acetonitrile에 H2O를 첨가한 용액을 제조하였다. 각각의 알룩사이드, HPC와 용매인 n-octyl alcohol용액을 투명하게 만들기 위해 아르곤분위기 glove box에서 2시간 교반하였다. 두 용액을 반응기에서 10~30분간 교반시키고 30분 동안 수성시간 후 5000 rpm에서 5분간 원심분리시켜 고성압자를 용매와 분리시켰다. 원심분리 후 얻어진 분말을 iso-propanol로 분산용매로 사용하여 60분간 초음파 세척을 행하였다.

3. 결과 및 고찰.
ASB를 출발알룩사이드로 사용하였을 때 제조된 분말을 100℃에서 건조하고 400, 1000, 1150℃에서 열처리한 후 적외선 분광분석을 수행한 결과를 Fig. 1에서 나타내었다. Fig. 1의 (a)에서는 다른 알룩사이드를 사용하였을 때와 같이 공동으로 관찰되는 3000~3500cm⁻¹에 이르는 주파수범위의 흡수파크는 O-H 결합의 신축진동에 의한 흡포이며 1640cm⁻¹에서의 흡수파크는 H-O-H결합의 급함방식(banding mode)에 의한 것이고, 1400cm⁻¹에서의 흡수파크는 acetonitrile에서 기인하는 NH₃의 교환에 의한 흡수파크이다. 또한 1070cm⁻¹에서의 피크는 Al-OH 결합의 급함에 의한 흡수대가 관찰되는데 이들 피크들은 열처리 온도가 높아짐에 따라 사라지는데, 특히 NH₃의 교환에 의한 흡수파크는 Fig. 1의 (b)에서 모두 사라졌으며 Fig. 1의 (c)에서는 거의 존재하지 않는다. 이는 탈수 중합에 의한 결정 형성에 기인한 결과라고 생각된다. 또한 -OH 결합에 따른 흡수파크를 관찰하면 Fig. 1의 (b)와 (c)에서의 열처리 온도에서도 -OH 결합의 피크가 관찰되는데 이것은 α-Al₂O₃가 1060℃ 범위에서 형성됨과 비교해보면 불완전한 결정형이로 인해 입자 내부에 -OH기들이 존재하는 것에 기인하는 것으로 생각된다. 또한 Fig. 1의 (c)에서 보듯이 400-800cm⁻¹의 저주파수 영역에서는 α-Al₂O₃에 기인한 특성파크가 570, 450cm⁻¹ 부근에서 관찰되었다. 형성온도가 25℃이고 용의 농도가 0.2M이며 출발알룩사이드로 AIP를 사용하여 합성한 분말을 100℃에서 24시간 건조시킨 분말을 400, 800, 1000과 1150℃에서 각각 3시간 동안 열처리하여 얻은 시료에 대한 XRD 패턴을 Fig. 2에 나타내었다. 400℃에서 3시간동안 온열처리한 분말의 경우 Fig. 2의 (a), (b)에서와 같이 특정 각도에서 피크가 관찰되지 않고 완만한 곡선을 나타낸며, 특히 2θ가 7°이하의 낮은 각도를
알루미늄 알록사이드를 이용한 구형 알루미나 분체의 제조

에서 회절 강도가 크게 증가하는 것으로 보아, 합성된 입자는 비정질 상태이며 유리상태가 아닌 젤 상태로 추정된다(4). Fig. 2의 (c)는 1000℃에서 3시간 열처리한 분말의 경우로 400, 800℃에서 3시간 열처리한 경우와 비교해 특정 위치에서 피크가 나타나며, 이들 피크들은 JCPDS card와 비교한 결과, Al₂O₃의 γ-형 구조에 해당하는 것으로 확인되었다. Fig. 3은 ATE를 출발알콜사이드로 이용하여 HPC 존재하에서 제조된 알루미늄 하이드로옥사이드 입자의 TG-DTA 곡선을 보여준다. 초기에서부터 250℃까지 DTA곡선의 흐름피크가 관찰되었다. 이 흐름 피크는 탈수 반응에 기인하는데 TG곡선의 급격한 점량 감소가 이를 증명한다. DTA곡선에서 400℃와 800℃까지 강한 발열 피크가 관찰되는데 이는 프로포시어기, 부복시키, 예복시키, octanol, acetoniitrile, HPC와 같은 전류 유기물의 분해에 기인한다. 1000℃와 1200℃까지 에서의 약간의 발열피크는 γ-Al₂O₃에서 α-Al₂O₃의 상전환에 기인한다. 이러한 사실은 각각의 알록사이드로부터 얻어진 XRD 결과와 잘 일치하였으며, 탈수 반응과 전류 유기물의 분해 반응에 따른 점량감소는 1200℃까지 각각 44.72%(AIP의 경우), 47.55%(ASB의 경우), 54.12%(ATE의 경우)였다. Fig. 4에서는 다른 조건을 일정하게 두고 AIP의 농도를 변화시켜 실험한 결과로서 AIP의 농도가 0.05~0.2 M로 증가할수록 생성되는 알루미늄 하이드로옥사이드의 입자크기는 0.14μm에서 1.52μm의 크기로 증가하는 것을 보여준다. 이러한 현상은 ASB와 ATE를 사용하였을 때도 같은 결과를 보여주는데 이는 용매에 녹아있는 알록사이드 양이 acetoniitrile 점화에 따른 에너지 전 생성에 있어서 한정된 HPC에 의해 완전히 분산되지 않고 2차 입자로 성장하기 때문으로 추측된다. Fig. 5는 ASB를 출발알콜사이드를 사용하였을 때 모든 조건을 일정하게 하고 분산체로 쓰이는 HPC의 농도를 변화시켜 합성한 시료의 미세구조이다. Fig. 5(a)는 HPC의 존재 없이 제조된 시료로서 응집이 많이 구형 입자를 생성하지 못했고, Fig. 5(b)는 HPC 0.1g/ℓ 조건하에서 제조된 시료로서 구형 입자를 생성하며 0.42μm 정도의 크기를 보여준다. 반면에 Fig. 5(c)는 HPC 0.5g/ℓ의 조건하에 제조된 시료로서 구형을 나타내지 않고 입자크기가 1.7μm 정도로 커졌고 이러한 경향은 다른 알록사이드를 사용하였을 때도 비슷한 결과를 보여주었다. 이러한 결과로부터 분산체의 일정량은 단분산성 을 증대시키는 반면 적당량 이상의 양은 단분산성을 감소시키며 구형 입자생성에 장애가 되었다. Fig. 6은 ATE를 출발알콜사이드로 사용하였을 때 반응온도가 25℃로 일정할 때 몬의 농도를 0.1~0.4M로 변화시켜 합성한 알루미늄 하이드로옥사이드 입자의 미세 구조이다. Fig. 6(a)는 0.1M H₂O에서 얻어진 알루미늄 하이드로옥사이드의 미세구조로 입자크기가 0.37μm 정도이며 Fig. 6(d)는 0.4M H₂O의 경우로서 입자크기가 0.14μm 정도였다. 이와 같이 본 연구에서는 알록사이드 종류에 상관없이 다른 조건을 일정하게 하고 몬의 농도가 증가할수록 생성되는 입자 크기는 감소하는 경향을 보였다.

4. 참고 문헌.
Fig. 1. FT-IR spectra of Al₂O₃ powder synthesized from AIP.

Fig. 2. XRD patterns of Al₂O₃ powder synthesized from ASB.

Fig. 3. TG and DTA curve of Al₂O₃ powder synthesized from ATE.

Fig. 4. SEM photographs of aluminum hydroxide synthesized from AIP.
(a) 0.05M AIP, (b) 0.1M AIP, (c) 0.15M AIP, (d) 0.2M AIP.

Fig. 5. SEM photographs of aluminum hydroxide synthesized from ASB.
(a) 0g/l HPC, (b) 0.1g/l HPC, (c) 0.5g/l HPC.

Fig. 6. SEM photographs of aluminum hydroxide synthesized from ATE.
(a) 0.1M H₂O, (b) 0.2M H₂O, (c) 0.3M H₂O, (d) 0.4M H₂O.