Preparation of Activated Carbon from Resources of Biomass

H. H. Kim, S. H. You, H. S. Kim
Division of Chemical Engineering, Sunmoon University

Abstract—The coffee waste is a kind of biomass resources. In this study, activated carbons were successfully prepared from coffee waste by chemical activation with Zinc Chloride. As a result of chemical activation, the most important parameter in chemical activation of coffee char was found to be chemical ratio of activation agents. N₂-BET surface areas and total pore volume of coffee char by chemical activation using Zinc Chloride(100-300%) were measured as about 1024-1483m²/g and 0.51~0.81cm³/g, respectively.

1. 서론
활성탄(activated carbon)은 1900년대 초부터 공업적으로 제조되어 흑착제로 여러 가지 산업분야에 사용되고 있다. 최근에는 대기오염, 수질오염 제어에 사용되고 있으며 특히 공해방지 및 환경보전, 상수도의 고도처리 등의 용도로 활성탄이 사용되어지고 있다[1-3]. 이와 같이 활성탄이 제조되어 다양한 분야에 사용되는데 최근에는 자원을 재활용하는 의미에서 폐기물을 열분해하여 활성탄으로 제조하는 신기술을 발표하고 있다. 예를 들어 콜타이어를 열분해하여 활성탄으로 제조하고 있으며, biomass를 이용하여 활성탄으로 제조하기도 하였다. 최근까지의 biomass를 이용하여 활성탄을 제조한 연구는 녹차잎, 수수겨, 벼땃, 호두껍질 등을 이용한 식물계 활성탄제조의 연구이다[6]. 산업혁명 이후 인류는 화학공업의 원료로 화학자원인 석유와 가스 및 석탄자원에 크게 의존하며 산업을 발달시켜왔다. 이러한 화학자원은 극히 자원의 한계성을 보이고 있고 지역의 정체에 따른 여러 가지 복잡성도 야기되어 왔다. 특히 자원의 대부분을 해외에 의존하고 있기 때문에 대체 원료의 개발은 시급히 필요할 수 있다.

본 연구에서는 biomass 중의 한가지인 폐기되는 커피폐기물을 이용하여 활성탄을 제조하는 활성탄제조 가능성 연구를 수행한다. 국내의 커피 및 커피원두의 수입량은 연간 15%씩 증가하고 있는 실정이며 이러한 커피를 수출하고 버려지는 많은 양의 커피폐기물을 재활용하여 고품질의 활성탄으로 제조하는 것을 목표로 하여 연구를 수행하였다.

활성탄의 성능은 원료의 특성에 따라 크게 좌우되는데 커피폐기물은 식물계의 원료로 분류할 수 있으며 성분 또한 식유성분이 50% 이상을 차지하는 품질로 인용문헌을 통해 알 수 있다[7]. 커피폐기물의 열분해 후 적재를 이용하여 활성탄을 제조하는 연구는 50% 이상 되는 식유성분의 영향을 받아 활성탄을 제조하였을 때 pore의 형성을 유도하고 비표면적이 넓어 황반능성이 우수한 것으로 기대된다.

커피폐기물을 활성탄으로 제조하기 위하여 탄화시간, 탄화온도 및 탄화수율(yield) 등을 고려하여 적절한 탄화온도와 시간을 설정하였으며, 적절한 온도와 시간에서 탄화시킨 탄화물(char)을 활성화시키기 위하여 ZnCl₂를 이용한 압프활성화법을 이용하였다. 활성화 단계에서는 탄화물을 침적시키는데 사용되는 활성화제의 양과 활성화 온도 및 시간에 대하여 고려하였다.
Fig. 1. Preparation process of coffee activated carbon

2. 실험
2.1. 활성탄 제조과정
활성탄으로 제조되기까지의 과정은 원료, roasting, 탄화, 약품활성화, 수세, 그리고, 건조의 순서로 진행되며 Fig. 1에 제조과정을 나타내었다. 본 연구에서 제조하는 활성탄의 원료는 커피폐기물용으로 사용하며 원료로 사용되는 커피폐기물은 충분히 증류수로 수세하고 110℃로 12hr 정도 건조하여 원료로 사용한다.
준비된 커피폐기물 원료를 350~400℃의 온도로 hot plate에서 충분히 roasting 시키는데, 이 roasting 과정에서 350℃ 이상이면 volatile compound 및 non-volatile compound가 제거되는 온도이기 때문에 커피폐기물 내부 및 표면에 남아있던 불순물 및 커피 폐액 등이 추출되며 기화된다.
탄화과정(carbonization)은 활성탄에 있어서 기본적인 단계이며 탄화온도에 따라서 활성탄의 구조 및 홍합성성이 다르게 나타난다. 일반적으로 탄화온도는 500~900℃정도에서 실시하며[8], 본 연구에서는 400~700℃의 온도에서 탄화시키며, 탄화시간은 30~60min으로 하여 폐허된 두의 최적 탄화조건을 찾는 연구를 수행하였다. 최적조건은 탄화수율(yield)과 탄화후 비표면적(BET)을 측정·비교하여 커피폐기물에 적합한 최적의 탄화 온도와 시간을 결정하였다.
적절한 온도와 시간에서 탄화된 coffee char를 활성화시키는데 본 연구에서는 약품 부활법을 선택하였으며 활성화제로서는 ZnCl₂를 사용하였고, 약품을 취약시키는 chemical ratio와 부활시간, 그리고 온도에 따라서 부활의 정도를 비교하였다.

2.2. 기기 및 시약
탄화와 활성화를 위하여 electronic furnace(Lindberg Co. Germany)를 이용하였으며 탄화 및 활성화 후 표면적(BET)과 total pore volume등의 측정을 위하여 ASAP2010(Micromeritics Co. U.S.A.)을 이용하였다. 탄화수율(%)을 측정하기 위하여 TGA1500(Rheometric Scientific Co. England)을 사용하였다. 시약은 활성화제로 ZnCl₂를 사용하였고 활성화전에 탄화된 후 종류수제를 위하여 HCl과 NaOH를 사용하였으며 모두 1급시약을 사용하였다.

3. 결과 및 고찰
커피폐기물의 최적탄화온도와 시간을 구하기 위하여 400~700℃에서 30분과 1시간의 탄화를 실시하였고, 그 결과는 Table 1에 나타나있다. 탄화수율과 탄화후의 비표면적 두 가지를 고려하여 볼 때 활성화시키기에 알맞은 탄화온도 및 시간은 650℃에서 60min~90min인 것으로 판단할 수 있었으며, 650℃에서 60min 동안 탄화시킨 char의 비표면적과 수율은 324m²/g, 65%정도로 Table 1에서 예상한 결과를 보였다. 탄화후 얻은 물질을 coffee char라 하였으며 탄화후에 coffee char를 SEM photograph로 분석하였는데 탄화 후에 규칙적인 열유구조를 형성하고 있는 것으로 분석되었으며, 4000배의 사진에는 상당히 많은 pore structure가 형성되어 있음을 Fig. 2를 통해 알 수 있었다. 활성화의 chemical ratio에 따른 결과를 보면,
(a) magnification 500

(b) magnification 4000

Fig. 2. SEM Photograph after carbonization

Fig. 3. Adsorption of nitrogen at 77K on prepared coffee activated carbon

Fig. 4. BET plot for nitrogen on prepared coffee activated carbon at 77K

Fig. 5. Pore size distribution for prepared coffee activated carbon and Aldrich A.C.

용용화학, 제 1 권 제 2 호, 1997
Table 1. BET Surface Areas and Yield after Carbonization

<table>
<thead>
<tr>
<th>Time</th>
<th>Results</th>
<th>400°C</th>
<th>500°C</th>
<th>600°C</th>
<th>700°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BET Surface Areas (m²/g)</td>
<td>113</td>
<td>188</td>
<td>316</td>
<td>391</td>
</tr>
<tr>
<td>30min</td>
<td>Carbonization Yield(%)</td>
<td>87</td>
<td>77</td>
<td>72</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>BET Surface Areas (m²/g)</td>
<td>174</td>
<td>210</td>
<td>350</td>
<td>440</td>
</tr>
<tr>
<td>60min</td>
<td>Carbonization Yield(%)</td>
<td>82</td>
<td>74</td>
<td>65</td>
<td>61</td>
</tr>
</tbody>
</table>

Table 2. Results of Chemical activation by Zinc Chloride

<table>
<thead>
<tr>
<th></th>
<th>100%</th>
<th>200%</th>
<th>300%</th>
<th>Aldrich AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET Surface Areas (m²/g)</td>
<td>1035</td>
<td>1346</td>
<td>1483</td>
<td>1088</td>
</tr>
<tr>
<td>Total pore volume (cm³/g)</td>
<td>0.51</td>
<td>0.71</td>
<td>0.81</td>
<td>0.79</td>
</tr>
<tr>
<td>Average pore radius (Å)</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>21</td>
</tr>
</tbody>
</table>

Fig. 3에는 상대압력에 따른 흡착등 온선을 보이고 있으며 300%의 chemical ratio 로 최적한 char가 높은 흡착등온선을 나타내고 있다. Fig. 4는 BET equation을 통해 비교면적을 산출하기 위하여 slope과 Y절편을 구하는 BET plot을 보이고 있으며, correlation coefficient는 0.9998이다. BET plot에서 구한 데이터를 통하여 계산한 비교면적(BET)을 Table 2에 나타내었다. 역시 300%(ZnCl₂)의 chemical ratio로 최적시간 char가 1483±8m²/g의 높은 비교면적을 보였으며, 100%와 200%에서 최적적화시킨 char도 각각 1035m²/g와 1340m²/g의 결과를 보였다. total pore volume 역시 300%의 0.81cm³/g으로 가장 높게 나타났으며, 각각 점착율에 따른 pore size distribution을 Fig. 5에 나타내었다.

4. 결론

커피폐기물의 구조적 성질을 살펴보면 성유구조가 전체 구조의 50% 이상을 차지하는 것을 알 수 있다. 이 구조가 커피폐기물을 활성탄으로 제조할 수 있는 기본 요소를 갖추고 있다는 것으로 판단할 수 있었으며, 약품활성화제(ZnCl₂)로 800°C 에서 2h동안 coffee char을 부활시켰을 때의 비교면적(BET)은 최고 1483m²/g으로 나타났다. 본 연구를 통하여 비교적 비교면적이 높은 활성탄을 제조할 수 있었다. 이 coffee activated carbon을 이용하여 상수에서의 고도정수용으로 이용되거나 폐수처리장에서의 3차 처리 용도로 이용될 수 있으며 또한 공기정화 filter에 이용되거나 대기중의 SOx나 NOx 등의 유해물질제거에도 이용될 수 있으므로 예상된다.

참고문헌
