화학공학소재연구정보센터
Clean Technology, Vol.18, No.2, 170-176, June, 2012
퍼플로오로알킬에틸아크릴레이트 / 아크릴레이트 / 그리시딜메타크릴레이트 공중합체의 유화중합 및 그들의 표면특성
Emulsion Polymerization and Surface Properties of Perfluoroalkylethyl Acrylate/Acrylate/Glycidyl Methacrylate Copolymers
E-mail:
초록
플로오로 함유 아크릴 공중합체를 여러 가지 조성의 아크릴 단량체[AA : 에틸 아크릴레이트(EA), 부틸아크릴레이트(BA) 혹은 메틸메타크릴레이트(MMA)], 퍼플로오로알킬에틸 아크릴레이트(PFA) 및 그리시딜메타크릴레이트(GMA)로부터 유화중합법(유화제 : 소디움 도데실 설페이트/노닐페놀에톡실레이트)으로 합성하였다. 아크릴 단량체 중에서 BA를 사용한 경우 가장 낮은 표면에너지를 가진 아크릴 공중합체를 얻을 수 있었으며, 최적량의 단량체 조성(BA: 87 wt%, GMA : 8.7 wt% 및 PFA : 4.3 wt%)에서 얻은 공중합체의 표면에너지/물에 대한 접촉각/methylene iodide에 대한 접촉각은 19.89 mN/m/103.5° /78.7°로서 높은 표면활성을 지닌 것을 알 수 있었다. 따라서 본 연구에서 얻은 최적의 아크릴 공중합체는 높은 발수 및 발유표면 특성을 지닌 코팅소재로 활용할 수 있을 것이다.
A series of acrylic copolymers containing perfluoroalkyl acrylate were synthesized by 2-step emulsion polymerization of variety of acrylate monomers (ethyl acrylate, butyl acrylate or methyl methacrylate) with perfluoroalkyl ethyl acrylate (PFA) and glycidyl methacrylate (GMA) monomers. This study focused on effects of monomer compositions (the kind of acrylate monomer, contents of PFA and GMA) and composition of surfactants [(sodium dodecyl sulphate/nonylphenol 10mole ethoxylate (NP-10)] and initiator content on the contact angles and surface free energy. It was found that the copolymer having an optimum composition (BA : 87 wt%, GMA : 8.7 wt% and PFA : 4.3 wt%) was shown to be quite surface active [surface free energy : 19.89 mN/m and contact angles : 103.5° (water) and 78.7° (methylene iodide)] in the solid state. This result suggests that the optimal copolymer containing fluorinated monomer synthesized in this study have high potential as a low surface energy material, which may have high oil- and water-repellent surface and have been proposed as acrylic syntan for leather and also as soil-resistant/oil and water repellent coating for textiles and wood etc.
  1. Natanya MLH, Kaja J, Soren H, Eur. Polym. J., 43, 255 (2007)
  2. Berent MK, Zisman WA, J. Phys. Chem., 66, 1207 (1962)
  3. Sharfrin EG, Zisman WA, J. Phys. Chem., 64, 519 (1960)
  4. Honda K, Morita M, Otsuka H, Takahara A, Macromolecules, 38(13), 5699 (2005)
  5. Jiang WC, Meng WD, Qing FL, J. Appl. Polym. Sci., 98(1), 222 (2005)
  6. Morita M, Ogisu H, Kubo M, J. Appl. Polym. Sci., 73(9), 1741 (1999)
  7. Lim H, Lee Y, Park IJ, Lee SB, J. Colloid Interface Sci., 241(1), 269 (2001)
  8. Chen SI, Sheu YL, Sheu JL, Lee CT, Lin JS, J. Appl. Polym. Sci., 63(7), 903 (1997)
  9. Park IJ, Lee SB, Ko JC, J. Kor. Institute of Chem.Eng., 30, 303 (1992)
  10. Lee CY, Ha JW, Park IJ, Lee SB, J. Appl. Polym. Sci., 86(14), 3702 (2002)
  11. Yang T, Yao L, Peng H, Cheng S, Park IJ, J. Fluorine Chem., 127, 1105 (2006)
  12. Park IJ, Lee SB, Choi CK, Macromolecules, 31(21), 7555 (1998)
  13. Shen YX, Thomson R, “Fluorinated Acrylic Monomers Containing Urethane Groups and Their Polymers,” U.S. Patent No. 5,446,118 (1995)
  14. Kim YW, Chung KW, Lee EA, Seo YG, J. Ind. Eng. Chem., 14(6), 752 (2008)
  15. Ho T, Wynne KJ, Macromolecules., 25, 3521 (1992)
  16. Yoon SC, Ratner BD, Macromolecules., 21, 2401 (1988)
  17. Tan H, Xie XY, Li JH, Zhong YP, Fu Q, Polymer, 45(5), 1495 (2004)
  18. Shin JS, Kum CH, Yun JK, Park IK, Clean Technol., 14(3), 193 (2008)
  19. Kaelble DH, Moacanin J, Polym., 18, 475 (1977)