화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.1, 5-10, February, 2019
용매 처리 석유계 피치로 코팅된 인조 흑연 음극소재의 전기화학적 특성
Electrochemical Characteristics of Artificial Graphite Anode Coated with Petroleum Pitch treated by Solvent
E-mail:
초록
본 연구에서는 리튬이온전지 음극활물질로 용매를 사용하여 석유계 피치로 코팅된 인조 흑연의 전기화학적 특성을 조사하였다. 용매로는 n-hexane, toluene, tetrahydrofuran (THF), quinoline이 사용되었다. 제조된 음극소재는 SEM, TEM을 사용하여 코팅 특성을 확인하였으며, 1.0 M LiPF6 (EC:DEC=1:1 vol%) 전해액에서 리튬이차전지의 초기 충·방전, 사이클, 순환전압전류 및 임피던스 테스트를 통해 전기화학적 성능을 조사하였다. 합성된 인조 흑연의 코팅 두께는 약 100-500 nm이며, THF 용매를 사용하여 코팅된 흑연은 다른 용매를 사용하였을 때보다 매끄러운 표면을 가짐을 알 수 있었으며, 또한 낮은 초기 비가역용량(51 mAh/g), 높은 방전용량(360 mAh/g)과 높은 쿨롱 효율(99%)을 확인할 수 있었다.
In this study, electrochemical characteristics of artificial graphite coated with petroleum pitch using solvent method as anode material of lithium ion battery were investigated. As the solvent, n-hexane, toluene, tetrahydrofuran and quinoline were used. The surface of the prepared anode material was analyzed by SEM and TEM. Also the electrochemical performances of the prepared anode materials were performed by constant current first charge/discharge, cycle, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved inorganic solvents (EC:DEC=1:1 vol%). The coating thickness of the prepared graphite was about 100-500 nm and the graphite coated with THF solvent had a smoother surface than that using other solvents. It was found that pitch-coated graphite (THF) show the low initial irreversible capacity (51 mAh/g), the high discharge capacity (360 mAh/g) and coulombic efficiency (99%).
  1. Liang G, Qin X, Zou J, Luo L, Wang Y, Wu M, Zhu H, Chen G, Kang F, Li B, Carbon, 127, 424 (2018)
  2. Ma Z, Zhuang YC, Deng YM, Song XN, Zuo XX, Xiao X, Nan JM, J. Power Sources, 376, 91 (2018)
  3. Kawamoto M, He P, Ito Y, Adv. Mater., 29, 160242 (2017)
  4. Lee ML, Li YH, Liao SC, Chen JM, Yeh JW, Shih HC, Electrochimica Acta, 112, 529 (2013)
  5. Peled E, Golodnitsky D, Menachem C, Bar-Tow D, J. Electrochem. Soc., 145(10), 3482 (1998)
  6. Chem K, Yang H, Liang F, Xue D, ACS Appl. Mater. Interfaces, 10, 909 (2018)
  7. Ko HS, Choi JE, Lee JD, Appl. Chem. Eng., 25(6), 592 (2014)
  8. Inagaki M, Carbon, 50, 3247 (2012)
  9. Park DY, Park DY, Lan Y, Lim YS, Kim MS, Ind. Eng. Chem., 15, 588 (2009)
  10. Yoon S, Kim H, Oh SM, J. Power Sources, 94(1), 68 (2001)
  11. Kim BH, Kim JH, Kim JG, Bae MJ, Im JS, Lee CW, Kim S, J. Ind. Eng. Chem., 41, 1 (2016)
  12. Wang C, Zhao H, Wang J, Wang J, Lv P, Ionics, 19, 221 (2013)
  13. Wan CY, Li H, Wu MC, Zhao CJ, J. Appl. Electrochem., 39(7), 1081 (2009)
  14. Yosio M, Wang H, Fukuda K, Angew. Chem., 115, 4335 (2003)
  15. Han YJ, Kim J, Yeo JS, An JC, Hong IP, Nakabayashi K, Miyawaki J, Jung JD, Yoon SH, Carbon, 94, 432 (2015)
  16. Chen SL, Xie SP, Fan CL, Guo JG, Li XK, J. Saudi Chemical Society, 22, 316 (2018)
  17. Hoshi K, Ohta N, Nagaoka K, Bitoh S, Yamanaka A, Nozaki H, Okuni T, Inagaki M, TANSO, 240, 213 (2009)
  18. Nozaki H, Nagaoka K, Hoshi K, Ohta N, Inagaki M, J. Power Sources, 194(1), 486 (2009)
  19. Jung MZ, Park JY, Lee JD, Korean Chem. Eng. Res., 54(1), 16 (2016)
  20. Wang HY, Yoshio M, J. Power Sources, 93(1-2), 123 (2001)
  21. Jo YJ, Lee JD, Korean Chem. Eng. Res., 56(3), 320 (2018)
  22. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y, Electrochim. Acta, 45(1-2), 67 (1999)