화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.5, 1310-1318, May, 2017
Process simulation for the recovery of lactic acid using thermally coupled distillation columns to mitigate the remixing effect
E-mail:
The objective of this study was to find process simulations of the plant-wide scale lactic acid recovery process using thermally coupled distillation columns to mitigate the remixing effect. The remixing effect has been widely discussed because in a conventional column arrangement it induces a need for a significant amount of energy for repurification in lactic acid recovery processes. One way to overcome high energy consumption is by using thermally coupled distillation columns. This paper suggests and compares two types of thermally coupled distillation columns applied to the plant-wide scale lactic acid recovery process for removing the remixing effect considering a heavy organic impurity and lactic acid oligomerization in the process. The equilibrium stage model based on the RADFRAC module of Aspen Plus was employed for simulating the thermally coupled distillation columns. Simulation results showed that thermally coupled distillation columns can eliminate the remixing effect and reduce energy consumption compared to conventional lactic acid recovery processes.
  1. Han M, Park S, J. Process Control, 6(4), 247 (1996)
  2. Hasebe S, Noda M, Hashimoto I, Comput. Chem. Eng., 23(4-5), 523 (1999)
  3. Engelien HK, Skogestad S, Comput. Chem. Eng., 28(5), 683 (2004)
  4. Al-Elg AH, Palazoglu A, Comput. Chem. Eng., 13, 1183 (1989)
  5. Ferre JA, Castells F, Flores J, Ind. Eng. Chem. Process Des. Dev., 24, 128 (1985)
  6. ANNAKOU O, MIZSEY P, Heat Recov. Syst. CHP, 15(3), 241 (1995)
  7. Cho HJ, Choi SH, Kim TY, Kim JK, Yeo YK, Korean J. Chem. Eng., 32(7), 1229 (2015)
  8. Kim YH, Korean J. Chem. Eng., 33(9), 2513 (2016)
  9. Petlyuk FB, Platonov VM, Slavinskii DM, Int. Chem. Eng., 5, 555 (1965)
  10. Schultz MA, Stewart DG, Harris JM, Rosenblum SP, Shakur MS, O'Brien DE, Chem. Eng. Prog., 98(5), 64 (2002)
  11. Long NVD, Lee M, Asia-Pac. J. Chem. Eng., 7, S71 (2012)
  12. Christiansen AC, Skogestad S, Lien K, Comput. Chem. Eng., 21, S237 (1997)
  13. Krolikowski L, AIChE J., 33, 643 (1987)
  14. Fidkowski ZT, Agrawal R, AIChE J., 47(12), 2713 (2001)
  15. Martinez FAC, Balciunas EM, Salgado JM, Gonzalez JMD, Converti A, Oliveira RPDS, Trends Food. Sci. Technol., 30, 70 (2013)
  16. Park SC, Lee SM, Kim YJ, Kim WS, Koo YM, KSBB J., 21, 199 (2006)
  17. Su CY, Yu CC, Chien IL, Ward JD, Ind. Eng. Chem. Res., 52, 11073 (2013)
  18. Wang ZH, Zhao KF, Biotechnol. Bioeng., 47(1), 1 (1995)
  19. Gonzalez MI, Alvarez S, Riera F, Alvarez R, J. Food Eng., 80(2), 553 (2007)
  20. Liew MKH, Tanaka S, Morita M, Desalination, 101, 269 (1995)
  21. Evangelista RL, Nikolov ZL, Appl. Biochem. Biotechnol., 57, 471 (1996)
  22. Cockrem MCM, Johnson PD, US Patent, 5,210,296 (1993).
  23. Woo D, Cho Y, Kim BK, Hwang H, Han M, Korean Chem. Eng. Res., 48(3), 342 (2010)
  24. Hernandez S, Jimenez A, Comput. Chem. Eng., 23(8), 1005 (1999)
  25. Khalifa M, Emtir M, Clean. Techn. Environ. Policy, 11, 107 (2009)
  26. Hernandez S, Segovia-Hernandez JG, Rico-Ramirez V, Energy, 31(12), 2176 (2006)
  27. Shah VH, Agrawal R, AIChE J., 56(7), 1759 (2010)
  28. Ashrafian R, Using dividing wall columns (DWC) in LNG production, M.S. Thesis, Norwegian University of Science and Technology Trondheim, Norway (2014).
  29. Amminudin KA, Smith R, Thong DYC, Towler GP, Chem. Eng. Res. Des., 79(7), 701 (2001)
  30. Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 42(3), 596 (2003)
  31. Sanz MT, Murga R, Beltran S, Cabezas JL, Coca J, Ind. Eng. Chem. Res., 43(9), 2049 (2004)
  32. Asthana NS, Kolah AK, Vu DT, Lira CT, Miller DJ, Ind. Eng. Chem. Res., 45(15), 5251 (2006)