화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.4, 1238-1249, April, 2017
Comparison of catalytic pyrolysis and gasification of Indonesian low rank coals using lab-scale bubble fluidized-bed reactor
E-mail:
Various methods are used in the coal gasification technology for increasing the efficiency of low rank coal to the level of high rank coal through catalytic gasification. The catalyst used in the catalytic gasification process lowers the activation energy required in the coal gasification reaction. Our purpose was to determine the characteristics of the reaction conditions for producing syngas and the characteristics for comparison catalytic pyrolysis and gasification performance. Among various coals, we used Indonesian low rank coals (Indonesian lignite, MSJ, and Roto South) characterized by a large deposit volume and low cost. Catalytic pyrolysis and gasification experiments were run under the same experimental conditions (reactor type, reaction temperature, catalyst content, and catalyst input method), and the characteristics were compared. Taking the conversion and heating values into consideration, the optimal conditions for catalytic gasification in this study were an H2O/C mole ratio of 10, temperature of 800 °C, and 10 wt% catalyst impregnation.
  1. International Energy Agency, Energy Technology Perspectives (2014).
  2. World Energy Resources: Coal World Energy Council (2013).
  3. Takarada T, Tamai Y, Tomita A, Fuel, 64, 1438 (1985)
  4. Huhn F, Klein J, Juntgen H, Fuel, 62(2), 196 (1983)
  5. Nahas NC, Fuel, 62, 239 (1983)
  6. Wigmans T, Elfring R, Moulijn JA, Carbon, 21(1), 1 (1983)
  7. McKee DW, Spiro CL, Kosky PG, Lamby EJ, Fuel, 62(2), 217 (1983)
  8. Huttinger KJ, Minges R, Fuel, 64(4), 486 (1985)
  9. Lang RJ, Fuel, 65(10), 1324 (1986)
  10. Takarada T, Ichinose S, Kato K, Fuel, 71(8), 883 (1992)
  11. Kubiak H, Schroter HJ, Sulimma A, van Heek KH, Fuel, 62(2), 242 (1983)
  12. Kuhn L, Plogmann H, Fuel, 62(2), 205 (1983)
  13. Juntgen H, Fuel, 62, 234 (1983)
  14. Hashimoto K, Miura K, Ueda T, Fuel, 65(11), 1516 (1986)
  15. Yuh SJ, Wolf EE, Fuel, 62(6), 738 (1983)
  16. Bruno G, Buroni M, Carvani L, Del Piero G, Passoni G, Fuel, 67(1), 67 (1988)
  17. Tomita A, Watanabe Y, Takarada T, Ohtsuka Y, Tamai Y, Fuel, 64(6), 795 (1985)
  18. Bakkerud PK, Catal. Today, 106(1-4), 30 (2005)
  19. Handayani I, Triantoro A, Diniysti D, J. Novel Carbon Res. Sci., 7, 68 (2013)
  20. Hippo EJ, Tandon D, Preprints of Papers-american Chemical Society Division Fuel Chemistry, 41, 216 (1996)
  21. Zhang H, Dissertation at the Brigham Young University (2001).
  22. Park ST, Choi YT, Sohn JM, Appl. Chem. Eng., 22(3), 312 (2011)
  23. Kim YT, Seo DK, Hwang J, Korean Chem. Eng. Res., 49(3), 372 (2011)
  24. McKee DW, Carbon, 20(1), 59 (1982)
  25. Sams DA, Talverdian T, Shadman F, Fuel, 64(9), 1208 (1985)
  26. Wang J, Sakanishi K, Saito I, Takarada T, Morishita K, Energy Fuels, 19(5), 2114 (2005)
  27. Dong L, Xu GW, Suda T, Murakami T, Fuel Process. Technol., 91(8), 882 (2010)
  28. Scala F, Woodhead publishing (2013).
  29. Lee WJ, Kim SD, Fuel, 74(9), 1387 (1995)
  30. Wang J, Jiang MQ, Yao YH, Zhang YM, Cao JQ, Fuel, 88(9), 1572 (2009)
  31. Kural OC (Ed.), Istanbul Technical University, Istanbul (1994).
  32. Tristantini D, Supramono D, Suwignjo RK, Int. J. Technol., 6, 22 (2015)
  33. Kumar A, Jones DD, Hanna MA, Energies, 2(3), 556 (2009)
  34. Lee WJ, Kim SD, Song BH, Korean J. Chem. Eng., 18(5), 640 (2001)
  35. Lee JM, Kim YJ, Kim SD, Appl. Therm. Eng., 18(11), 1013 (1998)
  36. Chen L, Nolan R, Avadhany S, MIT (2009).
  37. Li S, Ji XZ, Zhang XS, Gao L, Jin HG, Appl. Energy, 136, 98 (2014)
  38. Wu YQ, Wang JJ, Wu SY, Huang S, Gao JS, Fuel Process. Technol., 92(3), 523 (2011)
  39. Ahmed I, Gupta AK, Appl. Energy, 86(9), 1813 (2009)
  40. Luo SY, Zhou YM, Yi CJ, Energy, 44(1), 391 (2012)
  41. Garcia L, Salvador ML, Arauzo J, Bilbao R, Energy Fuels, 13(4), 851 (1999)
  42. Lee JG, Kim JH, Park TJ, Kim SD, Fuel, 75(9), 1035 (1996)