화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.46, 111-118, February, 2017
Synthesis of microcrystalline ZnO as an anodic material via a solvothermal method, and its electrochemical performance in Ni/Zn redox battery
E-mail:
Highly crystalline ZnO microparticles were prepared by a conventional solvothermal route by adding ethylenediamine (EDA). The product was analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate its crystallinity and morphology. The ZnO microparticles showed high purity and perfect crystallinity, and hexagonal rod shapes (width 5.0 μm × length 15.0 μm) were seen in the powdered particles. ZnO microparticles (0.5 M) were dissolved in 4.0 M LiOH, NaOH, and KOH alkaline electrolytes in order to evaluate their electrochemical properties. The cyclic voltammetry (CV) curves revealed that the micro-sized hexagonal ZnO rods dissolved in KOH electrolyte exhibited superior electrochemical activity to those dissolved in LiOH and NaOH electrolytes. The micro-sized hexagonal ZnO rods in KOH electrolyte showed a significantly improved cycle stability until the 100th cycle, and reached a discharge capacity of 143.6 mA h g-1, an efficiency of 86%, and a discharge voltage of 1.72 V at a current density of 30 mA cm-2. Moreover, during repeated charging-discharging cycles, the growth of zinc dendrites was suppressed, resulting in improved cycle stability in Ni/Zn redox batteries.
  1. Liu J, Wang Y, J. Power Sources, 294(-), 574 (2015)
  2. Long W, Yang ZH, Fan XM, Yang B, Zhao ZY, Jing J, Electrochim. Acta, 105(-), 40 (2013)
  3. Geng M, Northwood DO, Int. J. Hydrog. Energy, 28(6), 633 (2003)
  4. Lee SH, Yi CW, Kim K, J. Phys. Chem. C, 115, 2572 (2011)
  5. Zhang L, Huang H, Zhang WK, Gan YP, Wang CT, Electrochim. Acta, 53(16), 5386 (2008)
  6. Wang RJ, Yang ZH, Yang B, Wang TT, Chu ZH, J. Power Sources, 251(-), 344 (2014)
  7. Yu JX, Yang HX, Ai XP, Zhu XM, J. Power Sources, 103(1), 93 (2001)
  8. Wu JZ, Tu JP, Yuan YF, Ma M, Wang XL, Zhang L, Li RL, Zhang J, J. Alloy. Compd., 479, 624 (2009)
  9. Wang HB, Pan QM, Cheng YX, Zhao JW, Yin GP, Electrochim. Acta, 54(10), 2851 (2009)
  10. Ma M, Tu JP, Yuan YF, Wang XL, Li KF, Mao F, Zeng ZY, J. Power Sources, 179(1), 395 (2008)
  11. Huang JH, Yang ZH, Wang TT, Electrochim. Acta, 123(-), 278 (2014)
  12. Lee J, Chae J, Kim S, Kim DY, Park N, Kang M, J. Ind. Eng. Chem., 16(2), 185 (2010)
  13. Yuan YF, Tu JP, Wu HM, Zhang B, Huang XH, Zhao XB, Electrochem. Commun., 8, 653 (2006)
  14. Wen RJ, Yang ZH, Fan XM, Tan ZY, Yang B, Electrochim. Acta, 83(-), 376 (2012)
  15. Yang JL, Yuan YF, Wu HM, Li Y, Chen YB, Guo SY, Electrochim. Acta, 55(23), 7050 (2010)
  16. Xu M, Ivey DG, Xie Z, Qu W, J. Power Sources, 283(-), 358 (2015)
  17. Wu XW, Li YH, Li CC, He ZX, Xiang YH, Xiong LZ, Chen D, Yu Y, Sun K, He ZQ, Chen P, J. Power Sources, 300(-), 453 (2015)
  18. Vigneresse JL, Chem. Geol., 263, 69 (2009)
  19. Shin K, Jung K, Yoon S, Yeon S, Shim J, Joen J, Jin C, Kim Y, Park K, Jeong S, Trans. Korean Hydrogen New Energy Soc., 23, 390 (2012)
  20. Mir N, Rakhshanipour M, Heidari A, Mir AA, Salavati-Niasari M, J. Ind. Eng. Chem., 21(-), 884 (2015)
  21. Kwak BS, Kim DY, Park SS, Kim BS, Kang M, Chem. Eng. J., 281(-), 368 (2015)
  22. Chung J, Moon H, Bhang SH, Kim WS, Bong KW, Yu T, J. Ind. Eng. Chem., 36(-), 59 (2016)
  23. Xu L, Hu YL, Pelligra C, Chen CH, Jin L, Huang H, Sithambaram S, Aindow M, Joesten R, Suib SL, Chem. Mater., 21, 2875 (2009)
  24. Burton AW, Ong K, Rea T, Chan IY, Microporous Mesoporous Mater., 117, 75 (2009)
  25. Zhang Z, Yang ZH, Wang RJ, Feng ZB, Xie XE, Liao QF, Electrochim. Acta, 134(-), 287 (2014)
  26. Zhang Z, Yang ZH, Huang JH, Feng ZB, Xie XE, Electrochim. Acta, 155(-), 61 (2015)
  27. Li GR, Lu XH, Qu DL, Yao CZ, Zheng F, Bu Q, Dawa CR, Tong YX, J. Phys. Chem. C, 111, 6678 (2007)
  28. Kwak BS, Kim DY, Park SS, Kim BS, Kang M, Chem. Eng. J., 281(-), 368 (2015)