화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.11, 649-655, November, 2016
염료감응 태양전지의 비백금 상대전극을 위한 니켈 나노입자-흑연질 탄소나노섬유 복합체
Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells
E-mail:
Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
  1. An HL, Kang HR, Sun HJ, Han JH, Ahn HJ, Korean J. Mater. Res., 25(12), 672 (2015)
  2. Wu M, Lin X, Wang T, Qiu J, Ma T, Energy Environ. Sci., 4, 2308 (2011)
  3. Lee WJ, Ramasamy E, Lee DY, Song JS, ACS Appl. Mater. Interfaces, 1, 1145 (2009)
  4. An HR, Ahn HJ, Korean J. Mater. Res., 24(10), 565 (2014)
  5. Wang MK, Anghel AM, Marsan B, Ha NLC, Pootrakulchote N, Zakeeruddin SM, Gratzel M, J. Am. Chem. Soc., 131(44), 15976 (2009)
  6. Oh DH, An HL, Koo BR, Ahn HJ, J. Korean Powder Metall. Inst., 23, 95 (2016)
  7. Gong F, Xu X, Li Z, Zhou G, Wang ZS, Chem. Commun., 49, 1437 (2013)
  8. An HR, An H, Kim WB, Ahn HJ, ECS Solid State Lett., 3, M33 (2014)
  9. An GH, Lee TK, Ahn HJ, J. Korean Powder Metall. Inst., 22, 367 (2015)
  10. Saranya K, Subramania A, Sivasankar N, Mallick S, Mater. Res. Bull., 75(-), 83 (2016)
  11. Mohamed IMA, Motlak M, Akhtar MS, Yasin AS, Newehy MHE, Deyab SSA, Barakat NAM, Ceram. Int., 42, 146 (2016)
  12. Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q, ACS Appl. Mater. Interfaces, 2, 3572 (2010)
  13. Veerappan G, Bojan K, Rhee SW, ACS Appl. Mater. Interfaces, 3, 857 (2011)
  14. Aykut Y, ACS Appl. Mater. Interfaces, 4, 3405 (2012)
  15. Ezquerra TA, Connor MT, Roy S, Kulescza M, Nascimento JF, Calleja FJB, Compos. Sci. Technol., 61, 903 (2001)
  16. Yousef A, Akhtar MS, Barakat NAM, Motlak M, Yang OB, Kim HY, Electrochim. Acta, 102(-), 142 (2013)
  17. Chen X, Li M, Guan JC, Wang XK, Williams CT, Liang CH, Ind. Eng. Chem. Res., 51(9), 3604 (2012)
  18. Gu SY, Ren J, Vancso GJ, Eur. Polym. J., 41, 2559 (2005)
  19. Arai S, Endo M, Kaneko N, Carbon, 42, 641 (2004)
  20. Lin Q, Feng Z, Liu Z, Guo Q, Hu Z, He L, Ye H, Carbon, 88, 252 (2015)
  21. Liu Y, Liu Q, Gu J, Kang D, Zhou F, Zhang W, Wu Y, Zhang D, Carbon, 64, 132 (2013)
  22. An H, An GH, Ahn HJ, Korean J. Mater. Res., 26(5), 250 (2016)
  23. Rameez M, Saranya K, Subramania A, Sivasankar N, Mallick S, Appl. Phys. A-Mater. Sci. Process., 122, 71 (2016)
  24. Deprez N, Mclachlan DS, J. Phys. D-Appl. Phys., 21, 101 (1988)
  25. Gratzel M, J. Photochem. Photobiol. C-Photochem. Rev., 4, 145 (2003)
  26. Gratzel M, Inorg. Chem., 44(20), 6841 (2005)
  27. Wu JH, Li QH, Fan LQ, Lan Z, Li PJ, Lin JM, Hao SC, J. Power Sources, 181(1), 172 (2008)