화학공학소재연구정보센터
Clean Technology, Vol.22, No.4, 258-268, December, 2016
전자빔 조사에 의한 카르복시메틸셀룰로스 기반 복합 초흡수제 제조시 폴리머 조성 및 첨가물질의 종류에 따른 겔 특성 변화
Electron Beam Radiation Syntheses of Carboxymethylcellulose-based Composite Superabsorbent Hydrogels: Dependence of Gel Properties on Polymer Composition and Additives
E-mail:
초록
본 연구에서는 카르복시메틸셀룰로스(CMC)를 기반으로 한 복합 초흡수제를 전자빔 조사에 의해 제조하였다. CMC의 조성을 제조에 사용한 증류수의 양을 기준으로 하여 4 wt%, 5 wt%, 6 wt%, 7 wt%로 달리 하여 초흡수제를 제조하였다. 또한, 복합 초흡수제 제조를 위한 첨가물질로 그라파이트 산화물, 환원 그래핀 산화물, 활성탄, 벤토나이트를 사용하였다. CMC의 조성비와 첨가물질의 종류에 따라 제조된 초흡수제의 특성이 어떻게 달라지는지 조사하였다. 제조된 물질에서 기능기를 확인하기 위해 적외선분광분석을 수행하였고, 각 시료의 기계적 강도, 겔분율, 팽윤 속도, 평형 팽윤비 등을 측정하였다. 팽윤실험은 증류수, 우레아 수용액, 생리 식염수에서 진행하였다. 제조된 초흡수제를 5회에 걸쳐 재사용하면서 겔분율과 팽윤비의 변화를 관찰하였다. 제조된 초흡수제들 중 5 wt%의 CMC를 사용하고 그래핀 물질을 첨가물질로 하여 제조한 복합 초흡수제인 C5%GO와 C5%rGO가 가장 우수한 기계적 특성을 나타내었으며, 우레아 수용액과 생리 식염수에서의 팽윤비도 상대적으로 높았다.
In this work, carboxymethylcellulose-based composite superabsorbent hydrogels were prepared by electron beam radiation. The composition of carboxymethylcellulose (CMC) varied from 4 wt%, 5 wt%, and 6 wt% to 7 wt% based on the amount of distilled water in the syntheses of hydrogels. Graphite oxide, reduced graphene oxide, activated carbon, and bentonite were used as additives for the synthesis of composite superabsorbent. The effect of CMC composition and the type of additives on the gel properties of the prepared hydrogels was investigated. In order to verify the functional groups in the prepared materials, Fourier transform infrared spectroscopy was used. In addition, mechanical strength, gel fraction, swelling kinetics, and equilibrium swelling ratios were measured for the prepared hydrogels. Swelling experiments were carried out in distilled water, urea solution, and physiological saline water. Prepared hydrogels were reused for 5 times, and gel fraction and swelling ratio were measured at every 24 hours. Among the prepared hydrogels, C5%GO and C5%rGO exhibited excellent mechanical property and relatively high swelling ratios for urea solution and physiological saline water with promising applicability as slow-release fertilizers.
  1. HYPERLINK “http//www.nias.go.kr/envi/DataFileDown.do₩?fileid=14004” http://www.nias.go.kr/envi/DataFileDown.do?fileid=14004 (accessed Nov. 2016).
  2. Zohuriaan-Mehr MJ, Kabiri K, Iran. Polym. J., 17(6), 451 (2008)
  3. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S, Polym. Compos., 32, 277 (2011)
  4. Po R, J. Macromol. Sci. C, 34(4), 607 (1994)
  5. Salmawi KME, Ibrahim SM, Macromol. Res., 19(10), 1029 (2011)
  6. Raafat AI, Eid M, El-Arnaouty MB, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 283, 71 (2012)
  7. Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515 (2010)
  8. Editorial Department, Technology Status and R & D Trend of Next-Generation New Material Graphene, Ha Yeon, Seoul, 19-21 (2011).
  9. Qiu J, Xu L, Peng J, Zhai M, Zhao L, Li J, Wei G, Carbohydr. Polym., 70, 236 (2007)
  10. Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q, Colloids Surf. A: Physicochem. Eng. Asp., 401, 97 (2012)
  11. Sung Y, Kim TH, Lee B, Macromol. Res., 24(2), 143 (2016)
  12. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano, 4(8), 4806 (2010)
  13. Kwon J, Lee B, Chem. Eng. Res. Des., 104(-), 519 (2015)
  14. Chang C, Duan B, Cai J, Zhang L, Eur. Polym. J., 46, 92 (2010)
  15. Wach RA, Mitomo H, Yoshii F, Kume T, J. Appl. Polym. Sci., 81(12), 3030 (2001)
  16. Fei I, Wach RA, Mitomo H, Yoshii F, Kume T, J. Appl. Polym. Sci., 78(2), 278 (2000)