화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.6, 577-582, December, 2016
새로운 인계 난연제 합성과 이를 이용한 경질 폴리우레탄 폼의 난연성 및 물성 분석
Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foam Using New Phosphorus Flame Retardant
E-mail:
초록
본 연구에서는 새로운 비할로겐-인계 난연제를 포함하는 경질 폴리우레탄 폼[BHP-RPUF]과 할로겐-인계 난연제를 포함하는 경질 폴리우레탄 폼[TCPP-RPUF] 그리고 난연제를 포함하고 있지 않은 폴리우레탄 폼[Pure-RPUF]의 기계적물성 및 난연 특성에 대해 비교 분석하였다. 새로운 비할로겐-인계 난연제인 bis(3-(3-hydroxypropoxy)propyl) phenyl phosphate [BHP]는 disodium phenyl phosphate와 3-chloro-1-propanol의 반응을 통해 합성하였다. BHP-RPUF, TCPP-RPUF, 그리고 Pure-RPUF의 압축강도는 BHP-RPUF와 TCPP-RPUF가 비슷한 압축강도를 나타내었고, 열전도도에서는 BHPRPUF가 TCPP-RPUF보다 낮은 값인 0.023 W/m.K를 갖는 것을 확인하였다. 반응속도와 SEM을 통해 기공의 크기를 측정하여 열전도도에 미치는 영향에 대하여 분석하였고, TGA 분석을 통해 내열성을 확인하였다. 난연성은 한계산소지수(Limited Oxygen Index) 측정 실험을 통하여, Pure-RPUF보다 BHP-RPUF에서 난연성이 향상됨을 확인하였다.
In this study, we compared and analyzed the flame retardancy and mechanical properties of three different rigid polyurethane foams (RPUF) containing noble non-halogen phosphorus flame retardant (BHP-RPUF) or halogen-phosphorus flame retardant (TCPP-RPUF) or no flame retardant material (Pure-RPUF). The noble phosphorus-based flame retardant, bis(3-(3-hydroxypropoxy) propyl) phenyl phosphate (BHP), was synthesized by the reaction between disodium phenyl phosphate and 3-chloro-1-propanol. Through universal testing machine (UTM) experiments, the compressive strength of BHP-RPUF was similar to that of TCPP-RPUF. From the result of foam morphology analysis, it was confirmed that BHP-RPUF has the lowest thermal conductivity of 0.023W/mㆍK. We also measured the size of air bubbles using reaction velocity and SEM, and analyzed how they affect the thermal conductivity. In addition, the heat-resisting property was investigated through TGA analysis. The limited oxygen index (LOI) test confirmed that BHP had the ability to increase the flame retardancy of RPUF.
  1. Shi L, Li ZM, Yang MB, Yin B, Zhou QM, Tian CR, Wang JH, Polym. -Plast. Technol. Eng., 44(7), 1323 (2005)
  2. Yang C, Zhuang ZH, Yang ZG, J. Appl. Sci., 131(1), 1 (2014)
  3. Saha MC, Kabir ME, Jeelani S, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 479, 213 (2008)
  4. Song YH, Ha DM, Chung KS, Proceedings of Korean Institute of Fire Science and Engineering Spring Conference, 4, 168 (2008)
  5. Atkinson PA, Haines PJ, Skinner GA, Lever TJ, J. Therm. Anal. Calorim., 59, 395 (2000)
  6. Hwang TS, Lee BJ, Yang YK, Choi JH, Kim HJ, Korean Ind. Chem. News, 8(6), 36 (2005)
  7. Kim KY, Seo WJ, Lee JC, Seo JS, Kim SB, J. Korean Inst. Gas, 17(5), 75 (2013)
  8. Jang BN, Choi J, Polym. Sci. Technol., 20(1), 8 (2009)
  9. Han YG, Min SK, Park CY, Elastom. Compos., 49(4), 313 (2014)
  10. Chung YJ, Fire Sci. Eng., 20(4), 110 (2006)
  11. Modesti M, Zanella L, Lorenzetti A, Bertani R, Gleria M, Polym. Degrad. Stabil., 87, 287 (2005)