화학공학소재연구정보센터
Clean Technology, Vol.22, No.1, 16-28, March, 2016
RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리
Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes
E-mail:
초록
섬유산업은 염색폐수의 농도가 높고 방출량이 많아 고도의 공해산업으로 알려져 있다. 염색폐수에는 색도물질 뿐만 아니라 다량의 유기화합물과 불용성 물질이 섞여 있다. 합성염료 중 아조(azo) 염료는 특히 오염물질의 배출이 많은 것으로 알려져있다. 전기화학적 폐수처리방법은 전극의 산화.환원반응에 의해 색도와 유기물 등을 처리하는 방법으로 다른 폐수처리방법들에 비해 반응기가 작고 경제적이고 간단하며 오염물제거속도가 빠르다. 본 연구에서는 diazo 화합물인 CI Direct Blue 15 염색 폐수의 전기화학적 분해특성을 연구하였다. 실험은 전극재질과 조업조건을 달리하여 그에 따른 분해효율을 알아보고자 하였으며, 탈색 효율을 향상시킬 수 있는 최적전극 재질과 조업조건을 알아보고자 하였다. 조업조건으로는 전해질 농도, 전류밀도, 반응 온도, 초기 pH의 영향을 검토하였다. 음극은 stainless steel 전극을 사용하였고, 양극은 graphite와 RuO2/Ti, PtO2/Ti, IrO2/Ti를 사용하여 조업조건에 따른 각 전극의 염색폐수 분해성능 실험을 수행하였다. 그 결과 전해질의 농도와 전류밀도 증가에 따라 전기분해 효율은 증가하였다. 양극 재질에 따른 전기분해 효율은 산성 전해질 조건에서 RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite 순이었고 중성과 염기성에서는 RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite의 순으로 나타났다. 따라서 염색 폐수의 전기분해 처리에는 RuO2/Ti와 IrO2/Ti가 가장 효율적인 양극재질이었다.
Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.
  1. Te Ministry of Environment, Environment White Paper 2008, pp. 612-637 (2008).
  2. The Ministry of Environment, Act on the Water Ecosystem and Water Quality Conservation, Chapter 2 (2016).
  3. The Ministry of Environment, Enforcement Regulation of Act on the Water Ecosystem and Water Quality Conservation (2015).
  4. Hwang YG, Chu SY, Res. Inst. Eng. Technol., Kyungnam University, 13, 139 (1995)
  5. Muthukumar M, Karuppiah MT, Raju GB, Sep. Purif. Technol., 55, 198 (2004)
  6. Faouzi AM, Nasr B, Abdellatif G, Dyes Pigment., 73, 86 (2007)
  7. Fernandes A, Morao A, Magrinho M, Lopes A, Goncalves I, Dyes Pigment., 61, 287 (2004)
  8. The Society of Dyes and Colourists, Colour Index, 2.
  9. Pazarlioglu NK, Urek RO, Ergun F, Process Biochem., 40, 1923 (2005)
  10. Kumar K, Devi SS, Krishnamurthi K, Dutta D, Chakrabarti T, Bioresour. Technol., 98(16), 3168 (2007)
  11. Sun JH, Shi SH, Lee YF, Sun SP, Chem. Eng. J. (2009)
  12. Kim SK, Park SW, Hong DI, J. Korean Environ. Sci. Soc., 8, 539 (1999)
  13. Yu JJ, Park JM, Hwang DJ, Min KS, J. Korean Soc. Water Qual., 19, 1 (2003)
  14. Yoon YS, Ha BY, Huy N, van T, Textile Sci. Eng., 42, 316 (2005)
  15. Rjkumar D, Song BJ, Kim JG, Dyes Pigment., 72, 1 (2007)
  16. Szpyrkowicz L, Kelsall GH, Kaul SN, De Favei M, Chem. Eng. Sci., 56(4), 1579 (2001)
  17. Szpyrkowicz L, Radaelli M, Daniele S, Catal. Today, 100(3-4), 425 (2005)
  18. Szpyrkowicz L, Kaul SN, Neti RN, Satyanarayan S, Water Res., 39, 1601 (2005)
  19. Panizza M, Cerisola G, J. Hazard. Mater., 153(1-2), 83 (2008)
  20. Vlyssides AG, Papaioannou D, Loizidoy M, Karlis PK, Zorpas AA, Waste Manage., 20, 569 (2000)