화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.2, 248-254, April, 2016
습식산화반응을 통한 중력식반응기로부터의 슬러지 처리 및 유기산 생산 공정모사
Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation
E-mail:
초록
오늘날 폐수처리는 슬러지의 증가와 환경규제의 이유로 매우 중요해지고 있다. 슬러지처리는 폐수처리플랜트에 있어서 운영비의 50%를 차지하므로 슬러지 분해에 있어서 경제성 있는 방법이 대두되고 있다. 습식산화 반응은 폐수의 유기물을 효과적으로 제거해주고 슬러지 분해 뿐만 아니라 바이오연료의 전구체로 쓰일 수 있는 휘발성 유기산이 부산물로도 나온다. 습식산화 반응은 고온 고압의 높은 조건의 단점이 존재하지만 중력식 반응기를 통한 수두압으로 운영비를 줄일 수 있다. 본 연구에서는 상용프로그램인 Aspen Plus를 이용하여 아임계 조건에서 PSRK 상태방정식을 이용하여 공정모사 하였다. 중력식 반응기의 길이, 산화제 종류, 슬러지 유량과 산화제 주입 위치에 따라 사례 연구를 해보았으며 중력식 반응기 1000 m, 유량이 2 ton/h일 때에 유기물의 전환률은 92.02%, 유기산 효율은 0.17 g/g이였다.
Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.
  1. Ahn J, J. Korean Society Environmental Engineers, 27, 746 (2005)
  2. Chatzisymeon E, Diamadopoulos E, Mantzavinos D, Water Sci. Technol., 59, 2509 (2009)
  3. Cho IH, Ko IB, Kim JT, Korean Chem. Eng. Res., 52(4), 413 (2014)
  4. Dietrich M, Randall T, Canney P, Environ. Prog., 4, 171 (1985)
  5. Fei Q, Chang HN, Shang LA, Choi JDR, Kim N, Kang J, Bioresour. Technol., 102(3), 2695 (2011)
  6. Gardner L, Proceedings of the ICE-Structures and Buildings, 160, 129 (2007)
  7. Genc N, Yonsel S, Dagasan L, Onar AN, Waste Manage., 22, 611 (2002)
  8. Granheedfeld J, Schluter S, Daun M, Chem. Eng. Process., 34(2), 121 (1995)
  9. Hii K, Baroutian S, Parthasarathy R, Gapes DJ, Eshtiaghi N, Bioresour. Technol., 155(-), 289 (2014)
  10. Holderbaum T, Gmehling J, Fluid Phase Equilib., 70, 251 (1991)
  11. Kodra D, Balakotaiah V, Hazardous Waste Hazardous Materials, 10, 247 (1993)
  12. Kolaczkowski ST, Plucinski P, Beltran FJ, Rivas FJ, McLurgh DB, Chem. Eng. J., 73(2), 143 (1999)
  13. Kritzer P, Dinjus E, Chem. Eng. J., 83(3), 207 (2001)
  14. Lee SU, Jung K, Park GW, Seo C, Hong YK, Hong WH, Chang HN, Korean J. Chem. Eng., 29(7), 831 (2012)
  15. Li L, Chen P, Gloyna EF, AIChE J., 37, 1687 (1991)
  16. Luan M, Jing G, Piao Y, Liu D, Jin L, “Treatment of Refractory Organic Pollutants in Industrial Wastewater by Wet Air Oxidation,” Arabian Journal of Chemistry (2012).
  17. Luck F, Catal. Today, 53(1), 81 (1999)
  18. Ming G, Zhenhao D, Geochim. Cosmochim. Acta, 74, 5631 (2010)
  19. Mishra VS, Mahajani VV, Joshi JB, Ind. Eng. Chem. Res., 34(1), 2 (1995)
  20. Park GW, Fei Q, Jung K, Chang HN, Kim YC, Kim NJ, Kim S, Cho J, Biotechnol. J., 9, 1536 (2014)
  21. Park GW, Seo C, Jung K, Chang HN, Kim W, Kim YC, Bioprocess. Biosyst. Eng., 38, 1157 (2015)
  22. Su CS, Chem. Eng. Res. Des., 91(6), 1163 (2013)