화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 884-888, January, 2015
Synthesis and characterization of ZnO nanohemispheres via solution-phase thermal decomposition and its comparison with the solid-phase approach
E-mail:
ZnO nanohemispheres are successfully synthesized via thermal decomposition approach using [bis(2-hydroxy-1-naphthaldehydato)zinc(II)] complex, as precursor. The final ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and photoluminescence (PL) spectroscopy. Furthermore, the same solid phase thermal treatment is preformed and the morphology is compared with the obtained ZnO nanohemispheres.
  1. Li SF, Zhang XM, Du WX, Ni YH, Wei XW, J. Phys. Chem. C, 113, 1046 (2009)
  2. Kawano T, Imai H, Cryst. Growth Des., 6, 1054 (2006)
  3. Tamaki J, Sens. Lett., 3, 89 (2005)
  4. Azeez AA, Rhee KY, Park SJ, Hui D, Compos. B: Eng., 45, 308 (2013)
  5. Park SJ, Kim BJ, Lee SY, J. Colloid Interface Sci., 450, 150 (2013)
  6. Kurtz M, Strunk J, Hinrichsen O, Muhler M, Fink K, Meyer B, Woll C, Angew. Chem.-Int. Edit., 44, 2790 (2005)
  7. Yang CL, Wang JN, Ge WK, Guo L, Yang SH, Shen DZ, J. Appl. Phys., 90, 4489 (2001)
  8. Izaki M, Mizuno K, Shinagawa T, Inaba M, Tasaka A, J. Electrochem. Soc., 153(9), C668 (2006)
  9. Lee SH, Lee SS, Choi JJ, Jeon JJ, Ro K, Microsyst. Technol., 11, 416 (2005)
  10. Vayssieres L, Keis K, Lindquist SE, Hagfeldt A, J. Phys. Chem. B, 105(17), 3350 (2001)
  11. Hartlieb KJ, Raston CL, Saunders M, Chem. Mater., 19, 5453 (2007)
  12. Sun M, Hao WC, Wang CZ, Wang TM, Chem. Phys. Lett., 443(4-6), 342 (2007)
  13. Hamzah NAB, Pung SY, Sreekantan S, S.N.Q.A. Binti Abd Aziz, 620, 320 (2013)
  14. Pesika NS, Hu ZS, Stebe KJ, Searson PC, J. Phys. Chem. B, 106(28), 6985 (2002)
  15. Radovanovic PV, Norberg NS, McNally KE, Gamelin DR, J. Am. Chem. Soc., 124(51), 15192 (2002)
  16. Liu Y, Tai K, Shen, Dillon J, Chem. Mater., 25, 2927 (2013)
  17. Guo L, Ji YL, Xu HB, Simon P, Wu ZY, J. Am. Chem. Soc., 124(50), 14864 (2002)
  18. He Y, Yanagida T, Nagashima K, Zhuge F, Meng G, Xu B, Klamchuen A, Rahong S, Kanai M, Li X, Suzuki M, Kai S, Kawai T, J. Phys. Chem. C, 117, 1197 (2013)
  19. Yina M, Vitae A, Liu M, Liu S, Sens. Actuators B-Chem., 185, 735 (2013)
  20. Shi Y, Zhu C, Wang L, Zhao C, Li W, Fung KK, Ma T, Hagfeldt A, Wang N, Chem. Mater., 25, 1000 (2013)
  21. Wang Z, Qian XF, Yin J, Zhu ZK, Langmuir, 20(8), 3441 (2004)
  22. Salavati-Niasari M, Davar F, Mir N, Polyhedron, 27, 3514 (2008)
  23. Salavati-Niasari M, Mir N, Davar F, Polyhedron, 28, 1111 (2009)
  24. Salavati-Niasari M, Mir N, Davar F, Inorg. Chim. Acta., 363, 1719 (2010)
  25. Simeonidis K, Mourdikoudis S, Moulla M, Tsiaoussis I, Boubeta CM, Angelakeris M, Samara CD, Kalogirou O, J. Magn. Magn. Mater., 316, e1 (2007)
  26. Ahmad T, Vaidya S, Sarkar N, Ghosh S, Ganguli AK, Nanotechnology, 17, 1236 (2006)
  27. Kanade KG, Kale BB, Aiyer RC, Das BK, Mater. Res. Bull., 41(3), 590 (2006)
  28. Muruganandham M, Wu JJ, Appl. Catal. B: Environ., 80(1-2), 32 (2008)
  29. Salavati-Niasari M, Davar F, Fereshteh Z, Chem. Eng. J., 146(3), 498 (2009)
  30. Salavati-Niasari M, Mir N, Davar F, Chem. Eng. J., 181-182, 779 (2012)
  31. Salavati-Niasari M, Mir N, Davar F, J. Alloy. Compd., 476, 908 (2009)
  32. Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park JG, Hyeon T, Adv. Mater., 17(4), 429 (2005)
  33. Yousefi M, Noori E, Ghanbari D, Salavati-Niasari M, Gholami T, J. Cluster Sci., 25, 397 (2014)
  34. Salavati-Niasari M, Davar F, Mazaheri M, Shaterian M, J. Magn. Magn. Mater., 320, 575 (2008)